CyBERT-AttackER / README.md
Cyber-ThreaD's picture
Update README.md
ccc6e61 verified
metadata
base_model: SynamicTechnologies/CYBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Cyber-ThreaD/CyBERT-AttackER
    results: []

our_data

This model is a fine-tuned version of SynamicTechnologies/CYBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6376
  • Precision: 0.1972
  • Recall: 0.3585
  • F1: 0.2545
  • Accuracy: 0.6637

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.0809 0.4 500 2.0594 0.5 0.0066 0.0131 0.5298
1.8682 0.81 1000 1.8006 0.1043 0.0807 0.0910 0.5529
1.6332 1.21 1500 1.8356 0.1339 0.1495 0.1412 0.5748
1.468 1.61 2000 1.6261 0.1356 0.1706 0.1511 0.5891
1.401 2.01 2500 1.6943 0.1563 0.1693 0.1625 0.5986
1.1878 2.42 3000 1.6740 0.1194 0.2460 0.1608 0.5976
1.1182 2.82 3500 1.6201 0.1589 0.2196 0.1843 0.6227
0.9677 3.22 4000 1.6241 0.1393 0.2196 0.1704 0.6176
0.9055 3.63 4500 1.5932 0.1317 0.2646 0.1758 0.6158
0.8772 4.03 5000 1.5797 0.1654 0.2804 0.2080 0.6254
0.7224 4.43 5500 1.5723 0.1587 0.2976 0.2070 0.6413
0.7498 4.83 6000 1.5957 0.1794 0.2897 0.2215 0.6496
0.6632 5.24 6500 1.6825 0.1864 0.2751 0.2222 0.6427
0.6139 5.64 7000 1.5827 0.1769 0.3479 0.2345 0.6508
0.6212 6.04 7500 1.5537 0.1778 0.3413 0.2338 0.6526
0.5379 6.45 8000 1.5670 0.1792 0.3307 0.2325 0.6536
0.5376 6.85 8500 1.6113 0.1844 0.3386 0.2388 0.6530
0.5 7.25 9000 1.6432 0.1789 0.3214 0.2299 0.6600
0.4928 7.66 9500 1.6422 0.1881 0.3373 0.2415 0.6609
0.4877 8.06 10000 1.6851 0.2042 0.3360 0.254 0.6654
0.4339 8.46 10500 1.6376 0.1972 0.3585 0.2545 0.6637
0.4303 8.86 11000 1.6364 0.1835 0.3452 0.2397 0.6604
0.4509 9.27 11500 1.6448 0.1983 0.3413 0.2509 0.6664
0.4114 9.67 12000 1.6494 0.1956 0.3505 0.2511 0.6658

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Citing & Authors

If you use the model kindly cite the following work

@inproceedings{deka2024attacker,
  title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
  author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
  booktitle={International Conference on Web Information Systems Engineering},
  pages={255--270},
  year={2024},
  organization={Springer}
}