Crystalcareai commited on
Commit
6357aa0
·
verified ·
1 Parent(s): 5973332

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QuietForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_quiet.QuietConfig",
7
+ "AutoModel": "modeling_quiet.QuietModel",
8
+ "AutoModelForCausalLM": "modeling_quiet.QuietForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 32768,
17
+ "model_type": "quiet",
18
+ "max_thoughts": 3,
19
+ "thought_length": 10,
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 8,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_theta": 10000.0,
25
+ "sliding_window": 4096,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.34.0.dev0",
29
+ "use_cache": true,
30
+ "vocab_size": 32000
31
+ }
README.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ~~Mistral 7b v0.2 with attention_dropout=0.6, for training purposes~~
2
+
3
+ Conversion process:
4
+
5
+ 1. Download original weights from https://models.mistralcdn.com/mistral-7b-v0-2/mistral-7B-v0.2.tar
6
+ 2. Convert with https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/convert_mistral_weights_to_hf.py
7
+
8
+ 3. You may need to copy the tokenizer.model from Mistral-7B-Instruct-v0.2 repo.
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QuietForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_quiet.QuietConfig",
7
+ "AutoModel": "modeling_quiet.QuietModel",
8
+ "AutoModelForCausalLM": "modeling_quiet.QuietForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 32768,
17
+ "model_type": "quiet",
18
+ "max_thoughts": 3,
19
+ "thought_length": 10,
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 8,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_theta": 10000.0,
25
+ "sliding_window": 4096,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.34.0.dev0",
29
+ "use_cache": true,
30
+ "vocab_size": 32000
31
+ }
configuration_quiet.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Quiet model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from transformers.deprecated._archive_maps import QUIET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class QuietConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`QuietModel`]. It is used to instantiate an
30
+ Quiet model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of the Quiet-7B-v0.1 or Quiet-7B-Instruct-v0.1.
32
+
33
+ [quietai/Quiet-7B-v0.1](https://huggingface.co/quietai/Quiet-7B-v0.1)
34
+ [quietai/Quiet-7B-Instruct-v0.1](https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1)
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the Quiet model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`QuietModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 14336):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ num_key_value_heads (`int`, *optional*, defaults to 8):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
62
+ The maximum sequence length that this model might ever be used with. Quiet's sliding window attention
63
+ allows sequence of up to 4096*32 tokens.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ The id of the padding token.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ The id of the "beginning-of-sequence" token.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ The id of the "end-of-sequence" token.
77
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
78
+ Whether the model's input and output word embeddings should be tied.
79
+ rope_theta (`float`, *optional*, defaults to 10000.0):
80
+ The base period of the RoPE embeddings.
81
+ sliding_window (`int`, *optional*, defaults to 4096):
82
+ Sliding window attention window size. If not specified, will default to `4096`.
83
+ attention_dropout (`float`, *optional*, defaults to 0.0):
84
+ The dropout ratio for the attention probabilities.
85
+
86
+ ```python
87
+ >>> from transformers import QuietModel, QuietConfig
88
+
89
+ >>> # Initializing a Quiet 7B style configuration
90
+ >>> configuration = QuietConfig()
91
+
92
+ >>> # Initializing a model from the Quiet 7B style configuration
93
+ >>> model = QuietModel(configuration)
94
+
95
+ >>> # Accessing the model configuration
96
+ >>> configuration = model.config
97
+ ```"""
98
+
99
+ model_type = "quiet"
100
+ keys_to_ignore_at_inference = ["past_key_values"]
101
+
102
+ def __init__(
103
+ self,
104
+ vocab_size=32000,
105
+ hidden_size=4096,
106
+ intermediate_size=14336,
107
+ num_hidden_layers=32,
108
+ num_attention_heads=32,
109
+ num_key_value_heads=8,
110
+ hidden_act="silu",
111
+ max_position_embeddings=4096 * 32,
112
+ initializer_range=0.02,
113
+ rms_norm_eps=1e-6,
114
+ use_cache=True,
115
+ pad_token_id=None,
116
+ bos_token_id=1,
117
+ max_thoughts: int = 3,
118
+ thought_length: int = 10,
119
+ eos_token_id=2,
120
+ tie_word_embeddings=False,
121
+ rope_theta=10000.0,
122
+ sliding_window=4096,
123
+ attention_dropout=0.0,
124
+ **kwargs,
125
+ ):
126
+ self.vocab_size = vocab_size
127
+ self.max_position_embeddings = max_position_embeddings
128
+ self.hidden_size = hidden_size
129
+ self.intermediate_size = intermediate_size
130
+ self.num_hidden_layers = num_hidden_layers
131
+ self.num_attention_heads = num_attention_heads
132
+ self.sliding_window = sliding_window
133
+
134
+ # for backward compatibility
135
+ if num_key_value_heads is None:
136
+ num_key_value_heads = num_attention_heads
137
+
138
+ self.num_key_value_heads = num_key_value_heads
139
+ self.hidden_act = hidden_act
140
+ self.initializer_range = initializer_range
141
+ self.rms_norm_eps = rms_norm_eps
142
+ self.use_cache = use_cache
143
+ self.max_thoughts = max_thoughts
144
+ self.thought_length = thought_length
145
+ self.rope_theta = rope_theta
146
+ self.attention_dropout = attention_dropout
147
+
148
+ super().__init__(
149
+ pad_token_id=pad_token_id,
150
+ bos_token_id=bos_token_id,
151
+ eos_token_id=eos_token_id,
152
+ tie_word_embeddings=tie_word_embeddings,
153
+ **kwargs,
154
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.1"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbebdaa87478f5b1f9d01539963874db56958ff8cf8d801e465d78ce24328069
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a5f871a0fbb7919f263d78caff0d4d3b7a1d444552db3011ada70f48fd5ee4
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3db96f068de2a5b5947692954c252a5f74a1c8ad7d87ea950b5e396a7ddeca27
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
modeling_quiet.py ADDED
@@ -0,0 +1,1444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Quiet model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
35
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_quiet import QuietConfig
46
+
47
+
48
+ if is_flash_attn_2_available():
49
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
50
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
51
+
52
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "QuietConfig"
58
+
59
+
60
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
61
+ def _get_unpad_data(attention_mask):
62
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
63
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
64
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
65
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
66
+ return (
67
+ indices,
68
+ cu_seqlens,
69
+ max_seqlen_in_batch,
70
+ )
71
+
72
+
73
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Quiet
74
+ class QuietRMSNorm(nn.Module):
75
+ def __init__(self, hidden_size, eps=1e-6):
76
+ """
77
+ QuietRMSNorm is equivalent to T5LayerNorm
78
+ """
79
+ super().__init__()
80
+ self.weight = nn.Parameter(torch.ones(hidden_size))
81
+ self.variance_epsilon = eps
82
+
83
+ def forward(self, hidden_states):
84
+ input_dtype = hidden_states.dtype
85
+ hidden_states = hidden_states.to(torch.float32)
86
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
87
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
88
+ return self.weight * hidden_states.to(input_dtype)
89
+
90
+
91
+ # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Quiet
92
+ # TODO @Arthur no longer copied from LLama after static cache
93
+ class QuietRotaryEmbedding(nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+
97
+ self.dim = dim
98
+ self.max_position_embeddings = max_position_embeddings
99
+ self.base = base
100
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
101
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
102
+
103
+ # Build here to make `torch.jit.trace` work.
104
+ self._set_cos_sin_cache(
105
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
106
+ )
107
+
108
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
109
+ self.max_seq_len_cached = seq_len
110
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
111
+
112
+ freqs = torch.outer(t, self.inv_freq)
113
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
114
+ emb = torch.cat((freqs, freqs), dim=-1)
115
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
116
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
117
+
118
+ def forward(self, x, seq_len=None):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ if seq_len > self.max_seq_len_cached:
121
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
122
+
123
+ return (
124
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
125
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
126
+ )
127
+
128
+
129
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
130
+ def rotate_half(x):
131
+ """Rotates half the hidden dims of the input."""
132
+ x1 = x[..., : x.shape[-1] // 2]
133
+ x2 = x[..., x.shape[-1] // 2 :]
134
+ return torch.cat((-x2, x1), dim=-1)
135
+
136
+
137
+ # copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
138
+ # TODO @Arthur no longer copied from LLama after static cache
139
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
140
+ """Applies Rotary Position Embedding to the query and key tensors.
141
+
142
+ Args:
143
+ q (`torch.Tensor`): The query tensor.
144
+ k (`torch.Tensor`): The key tensor.
145
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
146
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
147
+ position_ids (`torch.Tensor`):
148
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
149
+ used to pass offsetted position ids when working with a KV-cache.
150
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
151
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
152
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
153
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
154
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
155
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
156
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
157
+ Returns:
158
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
159
+ """
160
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
161
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
162
+ q_embed = (q * cos) + (rotate_half(q) * sin)
163
+ k_embed = (k * cos) + (rotate_half(k) * sin)
164
+ return q_embed, k_embed
165
+
166
+
167
+ class QuietMLP(nn.Module):
168
+ def __init__(self, config):
169
+ super().__init__()
170
+ self.config = config
171
+ self.hidden_size = config.hidden_size
172
+ self.intermediate_size = config.intermediate_size
173
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
174
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
175
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
176
+ self.act_fn = ACT2FN[config.hidden_act]
177
+
178
+ def forward(self, x):
179
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
180
+
181
+
182
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
183
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
184
+ """
185
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
186
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
187
+ """
188
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
189
+ if n_rep == 1:
190
+ return hidden_states
191
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
192
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
193
+
194
+
195
+ class QuietAttention(nn.Module):
196
+ """
197
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
198
+ and "Generating Long Sequences with Sparse Transformers".
199
+ """
200
+
201
+ def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None):
202
+ super().__init__()
203
+ self.config = config
204
+ self.layer_idx = layer_idx
205
+ if layer_idx is None:
206
+ logger.warning_once(
207
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
208
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
209
+ "when creating this class."
210
+ )
211
+
212
+ self.hidden_size = config.hidden_size
213
+ self.num_heads = config.num_attention_heads
214
+ self.head_dim = self.hidden_size // self.num_heads
215
+ self.num_key_value_heads = config.num_key_value_heads
216
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
217
+ self.max_position_embeddings = config.max_position_embeddings
218
+ self.rope_theta = config.rope_theta
219
+ self.is_causal = True
220
+ self.attention_dropout = config.attention_dropout
221
+
222
+ if (self.head_dim * self.num_heads) != self.hidden_size:
223
+ raise ValueError(
224
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
225
+ f" and `num_heads`: {self.num_heads})."
226
+ )
227
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
228
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
229
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
230
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
231
+
232
+ self.rotary_emb = QuietRotaryEmbedding(
233
+ self.head_dim,
234
+ max_position_embeddings=self.max_position_embeddings,
235
+ base=self.rope_theta,
236
+ )
237
+
238
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
239
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
240
+
241
+ def forward(
242
+ self,
243
+ hidden_states: torch.Tensor,
244
+ attention_mask: Optional[torch.Tensor] = None,
245
+ position_ids: Optional[torch.LongTensor] = None,
246
+ past_key_value: Optional[Cache] = None,
247
+ output_attentions: bool = False,
248
+ use_cache: bool = False,
249
+ **kwargs,
250
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
251
+ if "padding_mask" in kwargs:
252
+ warnings.warn(
253
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
254
+ )
255
+ bsz, q_len, _ = hidden_states.size()
256
+
257
+ query_states = self.q_proj(hidden_states)
258
+ key_states = self.k_proj(hidden_states)
259
+ value_states = self.v_proj(hidden_states)
260
+
261
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
262
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
263
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
264
+
265
+ kv_seq_len = key_states.shape[-2]
266
+ if past_key_value is not None:
267
+ if self.layer_idx is None:
268
+ raise ValueError(
269
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
270
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
271
+ "with a layer index."
272
+ )
273
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
274
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
275
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
276
+
277
+ if past_key_value is not None:
278
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
279
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
280
+
281
+ # repeat k/v heads if n_kv_heads < n_heads
282
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
283
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
284
+
285
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
286
+
287
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
288
+ raise ValueError(
289
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
290
+ f" {attn_weights.size()}"
291
+ )
292
+
293
+ if attention_mask is not None:
294
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
295
+ raise ValueError(
296
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
297
+ )
298
+
299
+ attn_weights = attn_weights + attention_mask
300
+
301
+ # upcast attention to fp32
302
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
303
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
304
+ attn_output = torch.matmul(attn_weights, value_states)
305
+
306
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
307
+ raise ValueError(
308
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
309
+ f" {attn_output.size()}"
310
+ )
311
+
312
+ attn_output = attn_output.transpose(1, 2).contiguous()
313
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
314
+
315
+ attn_output = self.o_proj(attn_output)
316
+
317
+ if not output_attentions:
318
+ attn_weights = None
319
+
320
+ return attn_output, attn_weights, past_key_value
321
+
322
+
323
+ class QuietFlashAttention2(QuietAttention):
324
+ """
325
+ Quiet flash attention module. This module inherits from `QuietAttention` as the weights of the module stays
326
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
327
+ flash attention and deal with padding tokens in case the input contains any of them.
328
+ """
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
331
+ def __init__(self, *args, **kwargs):
332
+ super().__init__(*args, **kwargs)
333
+
334
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
335
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
336
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
337
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
338
+
339
+ def forward(
340
+ self,
341
+ hidden_states: torch.Tensor,
342
+ attention_mask: Optional[torch.Tensor] = None,
343
+ position_ids: Optional[torch.LongTensor] = None,
344
+ past_key_value: Optional[Cache] = None,
345
+ output_attentions: bool = False,
346
+ use_cache: bool = False,
347
+ **kwargs,
348
+ ):
349
+ if "padding_mask" in kwargs:
350
+ warnings.warn(
351
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
352
+ )
353
+
354
+ # overwrite attention_mask with padding_mask
355
+ attention_mask = kwargs.pop("padding_mask")
356
+ bsz, q_len, _ = hidden_states.size()
357
+
358
+ query_states = self.q_proj(hidden_states)
359
+ key_states = self.k_proj(hidden_states)
360
+ value_states = self.v_proj(hidden_states)
361
+
362
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
363
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
364
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
365
+
366
+ kv_seq_len = key_states.shape[-2]
367
+ if past_key_value is not None:
368
+ if self.layer_idx is None:
369
+ raise ValueError(
370
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
371
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
372
+ "with a layer index."
373
+ )
374
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
375
+
376
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
377
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
378
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
379
+
380
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
381
+
382
+ use_sliding_windows = (
383
+ _flash_supports_window_size
384
+ and getattr(self.config, "sliding_window", None) is not None
385
+ and kv_seq_len > self.config.sliding_window
386
+ )
387
+
388
+ if not _flash_supports_window_size:
389
+ logger.warning_once(
390
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
391
+ " make sure to upgrade flash-attn library."
392
+ )
393
+
394
+ if past_key_value is not None:
395
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
396
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
397
+ if (
398
+ getattr(self.config, "sliding_window", None) is not None
399
+ and kv_seq_len > self.config.sliding_window
400
+ and cache_has_contents
401
+ ):
402
+ slicing_tokens = 1 - self.config.sliding_window
403
+
404
+ past_key = past_key_value[self.layer_idx][0]
405
+ past_value = past_key_value[self.layer_idx][1]
406
+
407
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
408
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
409
+
410
+ if past_key.shape[-2] != self.config.sliding_window - 1:
411
+ raise ValueError(
412
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
413
+ f" {past_key.shape}"
414
+ )
415
+
416
+ if attention_mask is not None:
417
+ attention_mask = attention_mask[:, slicing_tokens:]
418
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
419
+
420
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
421
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
422
+
423
+ # repeat k/v heads if n_kv_heads < n_heads
424
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
425
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
426
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
427
+
428
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
429
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
430
+ # cast them back in float16 just to be sure everything works as expected.
431
+ input_dtype = query_states.dtype
432
+ if input_dtype == torch.float32:
433
+ if torch.is_autocast_enabled():
434
+ target_dtype = torch.get_autocast_gpu_dtype()
435
+ # Handle the case where the model is quantized
436
+ elif hasattr(self.config, "_pre_quantization_dtype"):
437
+ target_dtype = self.config._pre_quantization_dtype
438
+ else:
439
+ target_dtype = self.q_proj.weight.dtype
440
+
441
+ logger.warning_once(
442
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
443
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
444
+ f" {target_dtype}."
445
+ )
446
+
447
+ query_states = query_states.to(target_dtype)
448
+ key_states = key_states.to(target_dtype)
449
+ value_states = value_states.to(target_dtype)
450
+
451
+ # Reashape to the expected shape for Flash Attention
452
+ query_states = query_states.transpose(1, 2)
453
+ key_states = key_states.transpose(1, 2)
454
+ value_states = value_states.transpose(1, 2)
455
+
456
+ attn_output = self._flash_attention_forward(
457
+ query_states,
458
+ key_states,
459
+ value_states,
460
+ attention_mask,
461
+ q_len,
462
+ dropout=dropout_rate,
463
+ use_sliding_windows=use_sliding_windows,
464
+ )
465
+
466
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
467
+ attn_output = self.o_proj(attn_output)
468
+
469
+ if not output_attentions:
470
+ attn_weights = None
471
+
472
+ return attn_output, attn_weights, past_key_value
473
+
474
+ def _flash_attention_forward(
475
+ self,
476
+ query_states,
477
+ key_states,
478
+ value_states,
479
+ attention_mask,
480
+ query_length,
481
+ dropout=0.0,
482
+ softmax_scale=None,
483
+ use_sliding_windows=False,
484
+ ):
485
+ """
486
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
487
+ first unpad the input, then computes the attention scores and pad the final attention scores.
488
+
489
+ Args:
490
+ query_states (`torch.Tensor`):
491
+ Input query states to be passed to Flash Attention API
492
+ key_states (`torch.Tensor`):
493
+ Input key states to be passed to Flash Attention API
494
+ value_states (`torch.Tensor`):
495
+ Input value states to be passed to Flash Attention API
496
+ attention_mask (`torch.Tensor`):
497
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
498
+ position of padding tokens and 1 for the position of non-padding tokens.
499
+ dropout (`float`):
500
+ Attention dropout
501
+ softmax_scale (`float`, *optional*):
502
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
503
+ use_sliding_windows (`bool`, *optional*):
504
+ Whether to activate sliding window attention.
505
+ """
506
+ if not self._flash_attn_uses_top_left_mask:
507
+ causal = self.is_causal
508
+ else:
509
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
510
+ causal = self.is_causal and query_length != 1
511
+
512
+ # Contains at least one padding token in the sequence
513
+ if attention_mask is not None:
514
+ batch_size = query_states.shape[0]
515
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
516
+ query_states, key_states, value_states, attention_mask, query_length
517
+ )
518
+
519
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
520
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
521
+
522
+ if not use_sliding_windows:
523
+ attn_output_unpad = flash_attn_varlen_func(
524
+ query_states,
525
+ key_states,
526
+ value_states,
527
+ cu_seqlens_q=cu_seqlens_q,
528
+ cu_seqlens_k=cu_seqlens_k,
529
+ max_seqlen_q=max_seqlen_in_batch_q,
530
+ max_seqlen_k=max_seqlen_in_batch_k,
531
+ dropout_p=dropout,
532
+ softmax_scale=softmax_scale,
533
+ causal=causal,
534
+ )
535
+ else:
536
+ attn_output_unpad = flash_attn_varlen_func(
537
+ query_states,
538
+ key_states,
539
+ value_states,
540
+ cu_seqlens_q=cu_seqlens_q,
541
+ cu_seqlens_k=cu_seqlens_k,
542
+ max_seqlen_q=max_seqlen_in_batch_q,
543
+ max_seqlen_k=max_seqlen_in_batch_k,
544
+ dropout_p=dropout,
545
+ softmax_scale=softmax_scale,
546
+ causal=causal,
547
+ window_size=(self.config.sliding_window, self.config.sliding_window),
548
+ )
549
+
550
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
551
+ else:
552
+ if not use_sliding_windows:
553
+ attn_output = flash_attn_func(
554
+ query_states,
555
+ key_states,
556
+ value_states,
557
+ dropout,
558
+ softmax_scale=softmax_scale,
559
+ causal=causal,
560
+ )
561
+ else:
562
+ attn_output = flash_attn_func(
563
+ query_states,
564
+ key_states,
565
+ value_states,
566
+ dropout,
567
+ softmax_scale=softmax_scale,
568
+ causal=causal,
569
+ window_size=(self.config.sliding_window, self.config.sliding_window),
570
+ )
571
+
572
+ return attn_output
573
+
574
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
575
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
576
+
577
+ # On the first iteration we need to properly re-create the padding mask
578
+ # by slicing it on the proper place
579
+ if kv_seq_len != attention_mask.shape[-1]:
580
+ attention_mask_num_tokens = attention_mask.shape[-1]
581
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
582
+
583
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
584
+
585
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
586
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
587
+
588
+ if query_length == kv_seq_len:
589
+ query_layer = index_first_axis(
590
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
591
+ )
592
+ cu_seqlens_q = cu_seqlens_k
593
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
594
+ indices_q = indices_k
595
+ elif query_length == 1:
596
+ max_seqlen_in_batch_q = 1
597
+ cu_seqlens_q = torch.arange(
598
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
599
+ ) # There is a memcpy here, that is very bad.
600
+ indices_q = cu_seqlens_q[:-1]
601
+ query_layer = query_layer.squeeze(1)
602
+ else:
603
+ # The -q_len: slice assumes left padding.
604
+ attention_mask = attention_mask[:, -query_length:]
605
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
606
+
607
+ return (
608
+ query_layer,
609
+ key_layer,
610
+ value_layer,
611
+ indices_q,
612
+ (cu_seqlens_q, cu_seqlens_k),
613
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
614
+ )
615
+
616
+
617
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Quiet
618
+ # TODO @Arthur no longer copied from LLama after static cache
619
+ class QuietSdpaAttention(QuietAttention):
620
+ """
621
+ Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
622
+ `QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
623
+ SDPA API.
624
+ """
625
+
626
+ # Adapted from QuietAttention.forward
627
+ def forward(
628
+ self,
629
+ hidden_states: torch.Tensor,
630
+ attention_mask: Optional[torch.Tensor] = None,
631
+ position_ids: Optional[torch.LongTensor] = None,
632
+ past_key_value: Optional[Cache] = None,
633
+ output_attentions: bool = False,
634
+ use_cache: bool = False,
635
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
636
+ if output_attentions:
637
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
638
+ logger.warning_once(
639
+ "QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
640
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
641
+ )
642
+ return super().forward(
643
+ hidden_states=hidden_states,
644
+ attention_mask=attention_mask,
645
+ position_ids=position_ids,
646
+ past_key_value=past_key_value,
647
+ output_attentions=output_attentions,
648
+ use_cache=use_cache,
649
+ )
650
+
651
+ bsz, q_len, _ = hidden_states.size()
652
+
653
+ query_states = self.q_proj(hidden_states)
654
+ key_states = self.k_proj(hidden_states)
655
+ value_states = self.v_proj(hidden_states)
656
+
657
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
658
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
659
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
660
+
661
+ kv_seq_len = key_states.shape[-2]
662
+ if past_key_value is not None:
663
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
664
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
665
+
666
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
667
+
668
+ if past_key_value is not None:
669
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
670
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
671
+
672
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
673
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
674
+
675
+ if attention_mask is not None:
676
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
677
+ raise ValueError(
678
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
679
+ )
680
+
681
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
682
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
683
+ if query_states.device.type == "cuda" and attention_mask is not None:
684
+ query_states = query_states.contiguous()
685
+ key_states = key_states.contiguous()
686
+ value_states = value_states.contiguous()
687
+
688
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
689
+ query_states,
690
+ key_states,
691
+ value_states,
692
+ attn_mask=attention_mask,
693
+ dropout_p=self.attention_dropout if self.training else 0.0,
694
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
695
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
696
+ )
697
+
698
+ attn_output = attn_output.transpose(1, 2).contiguous()
699
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
700
+
701
+ attn_output = self.o_proj(attn_output)
702
+
703
+ return attn_output, None, past_key_value
704
+
705
+
706
+ QUIET_ATTENTION_CLASSES = {
707
+ "eager": QuietAttention,
708
+ "flash_attention_2": QuietFlashAttention2,
709
+ "sdpa": QuietSdpaAttention,
710
+ }
711
+
712
+
713
+ class QuietDecoderLayer(nn.Module):
714
+ def __init__(self, config: QuietConfig, layer_idx: int):
715
+ super().__init__()
716
+ self.hidden_size = config.hidden_size
717
+
718
+ self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
719
+
720
+ self.mlp = QuietMLP(config)
721
+ self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
722
+ self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
723
+
724
+ def forward(
725
+ self,
726
+ hidden_states: torch.Tensor,
727
+ attention_mask: Optional[torch.Tensor] = None,
728
+ position_ids: Optional[torch.LongTensor] = None,
729
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
730
+ output_attentions: Optional[bool] = False,
731
+ use_cache: Optional[bool] = False,
732
+ **kwargs,
733
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
734
+ if "padding_mask" in kwargs:
735
+ warnings.warn(
736
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
737
+ )
738
+ """
739
+ Args:
740
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
741
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
742
+ `(batch, sequence_length)` where padding elements are indicated by 0.
743
+ output_attentions (`bool`, *optional*):
744
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
745
+ returned tensors for more detail.
746
+ use_cache (`bool`, *optional*):
747
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
748
+ (see `past_key_values`).
749
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
750
+ """
751
+
752
+ residual = hidden_states
753
+
754
+ hidden_states = self.input_layernorm(hidden_states)
755
+
756
+ # Self Attention
757
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
758
+ hidden_states=hidden_states,
759
+ attention_mask=attention_mask,
760
+ position_ids=position_ids,
761
+ past_key_value=past_key_value,
762
+ output_attentions=output_attentions,
763
+ use_cache=use_cache,
764
+ )
765
+ hidden_states = residual + hidden_states
766
+
767
+ # Fully Connected
768
+ residual = hidden_states
769
+ hidden_states = self.post_attention_layernorm(hidden_states)
770
+ hidden_states = self.mlp(hidden_states)
771
+ hidden_states = residual + hidden_states
772
+
773
+ outputs = (hidden_states,)
774
+
775
+ if output_attentions:
776
+ outputs += (self_attn_weights,)
777
+
778
+ if use_cache:
779
+ outputs += (present_key_value,)
780
+
781
+ return outputs
782
+
783
+
784
+ QUIET_START_DOCSTRING = r"""
785
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
786
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
787
+ etc.)
788
+
789
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
790
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
791
+ and behavior.
792
+
793
+ Parameters:
794
+ config ([`QuietConfig`]):
795
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
796
+ load the weights associated with the model, only the configuration. Check out the
797
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
798
+ """
799
+
800
+
801
+ @add_start_docstrings(
802
+ "The bare Quiet Model outputting raw hidden-states without any specific head on top.",
803
+ QUIET_START_DOCSTRING,
804
+ )
805
+ class QuietPreTrainedModel(PreTrainedModel):
806
+ config_class = QuietConfig
807
+ base_model_prefix = "model"
808
+ supports_gradient_checkpointing = True
809
+ _no_split_modules = ["QuietDecoderLayer"]
810
+ _skip_keys_device_placement = "past_key_values"
811
+ _supports_flash_attn_2 = True
812
+ _supports_sdpa = True
813
+ _supports_cache_class = True
814
+
815
+ def _init_weights(self, module):
816
+ std = self.config.initializer_range
817
+ if isinstance(module, nn.Linear):
818
+ module.weight.data.normal_(mean=0.0, std=std)
819
+ if module.bias is not None:
820
+ module.bias.data.zero_()
821
+ elif isinstance(module, nn.Embedding):
822
+ module.weight.data.normal_(mean=0.0, std=std)
823
+ if module.padding_idx is not None:
824
+ module.weight.data[module.padding_idx].zero_()
825
+
826
+
827
+ QUIET_INPUTS_DOCSTRING = r"""
828
+ Args:
829
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
830
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
831
+ it.
832
+
833
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
834
+ [`PreTrainedTokenizer.__call__`] for details.
835
+
836
+ [What are input IDs?](../glossary#input-ids)
837
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
838
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
839
+
840
+ - 1 for tokens that are **not masked**,
841
+ - 0 for tokens that are **masked**.
842
+
843
+ [What are attention masks?](../glossary#attention-mask)
844
+
845
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
846
+ [`PreTrainedTokenizer.__call__`] for details.
847
+
848
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
849
+ `past_key_values`).
850
+
851
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
852
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
853
+ information on the default strategy.
854
+
855
+ - 1 indicates the head is **not masked**,
856
+ - 0 indicates the head is **masked**.
857
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
858
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
859
+ config.n_positions - 1]`.
860
+
861
+ [What are position IDs?](../glossary#position-ids)
862
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
863
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
864
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
865
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
866
+
867
+ Two formats are allowed:
868
+ - a [`~cache_utils.Cache`] instance;
869
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
870
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
871
+ cache format.
872
+
873
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
874
+ legacy cache format will be returned.
875
+
876
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
877
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
878
+ of shape `(batch_size, sequence_length)`.
879
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
880
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
881
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
882
+ model's internal embedding lookup matrix.
883
+ use_cache (`bool`, *optional*):
884
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
885
+ `past_key_values`).
886
+ output_attentions (`bool`, *optional*):
887
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
888
+ tensors for more detail.
889
+ output_hidden_states (`bool`, *optional*):
890
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
891
+ more detail.
892
+ return_dict (`bool`, *optional*):
893
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
894
+ """
895
+
896
+
897
+ @add_start_docstrings(
898
+ "The bare Quiet Model outputting raw hidden-states without any specific head on top.",
899
+ QUIET_START_DOCSTRING,
900
+ )
901
+ class QuietModel(QuietPreTrainedModel):
902
+ """
903
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`]
904
+
905
+ Args:
906
+ config: QuietConfig
907
+ """
908
+
909
+ def __init__(self, config: QuietConfig):
910
+ super().__init__(config)
911
+ self.padding_idx = config.pad_token_id
912
+ self.vocab_size = config.vocab_size
913
+
914
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
915
+ self.layers = nn.ModuleList(
916
+ [QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
917
+ )
918
+ self._attn_implementation = config._attn_implementation
919
+ self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
920
+
921
+ self.gradient_checkpointing = False
922
+ # Initialize weights and apply final processing
923
+ self.post_init()
924
+
925
+ def get_input_embeddings(self):
926
+ return self.embed_tokens
927
+
928
+ def set_input_embeddings(self, value):
929
+ self.embed_tokens = value
930
+
931
+ def _generate_thoughts(self, hidden_states, max_length):
932
+ thought_ids = []
933
+ thought_embeddings = []
934
+
935
+ for _ in range(self.config.max_thoughts):
936
+ thought_id = torch.LongTensor([[self.config.start_token_id]]).to(hidden_states.device)
937
+ thought_embedding = self.embed_tokens(thought_id)
938
+
939
+ for _ in range(max_length):
940
+ outputs = self.forward(
941
+ inputs_embeds=thought_embedding,
942
+ attention_mask=None,
943
+ use_cache=True,
944
+ )
945
+ logits = outputs.logits[:, -1, :]
946
+ next_token_id = torch.argmax(logits, dim=-1)
947
+
948
+ if next_token_id == self.config.end_token_id:
949
+ break
950
+
951
+ thought_id = torch.cat([thought_id, next_token_id.unsqueeze(0)], dim=-1)
952
+ thought_embedding = torch.cat([thought_embedding, self.embed_tokens(next_token_id.unsqueeze(0))], dim=1)
953
+
954
+ thought_ids.append(thought_id.squeeze(0))
955
+ thought_embeddings.append(thought_embedding.squeeze(0))
956
+
957
+ return thought_ids, thought_embeddings
958
+
959
+
960
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
961
+ def forward(
962
+ self,
963
+ input_ids: torch.LongTensor = None,
964
+ attention_mask: Optional[torch.Tensor] = None,
965
+ position_ids: Optional[torch.LongTensor] = None,
966
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
967
+ inputs_embeds: Optional[torch.FloatTensor] = None,
968
+ use_cache: Optional[bool] = None,
969
+ output_attentions: Optional[bool] = None,
970
+ output_hidden_states: Optional[bool] = None,
971
+ return_dict: Optional[bool] = None,
972
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
973
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
974
+ output_hidden_states = (
975
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
976
+ )
977
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
978
+
979
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
980
+
981
+ # retrieve input_ids and inputs_embeds
982
+ if input_ids is not None and inputs_embeds is not None:
983
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
984
+ elif input_ids is not None:
985
+ batch_size, seq_length = input_ids.shape
986
+ elif inputs_embeds is not None:
987
+ batch_size, seq_length, _ = inputs_embeds.shape
988
+ else:
989
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
990
+
991
+ if self.gradient_checkpointing and self.training:
992
+ if use_cache:
993
+ logger.warning_once(
994
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
995
+ )
996
+ use_cache = False
997
+
998
+ past_key_values_length = 0
999
+
1000
+ if use_cache:
1001
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1002
+ if use_legacy_cache:
1003
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1004
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1005
+
1006
+ if position_ids is None:
1007
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1008
+ position_ids = torch.arange(
1009
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1010
+ )
1011
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1012
+ else:
1013
+ position_ids = position_ids.view(-1, seq_length).long()
1014
+
1015
+ if inputs_embeds is None:
1016
+ inputs_embeds = self.embed_tokens(input_ids)
1017
+
1018
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1019
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1020
+ if is_padding_right:
1021
+ raise ValueError(
1022
+ "You are attempting to perform batched generation with padding_side='right'"
1023
+ " this may lead to unexpected behaviour for Flash Attention version of Quiet. Make sure to "
1024
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1025
+ )
1026
+
1027
+ if self._attn_implementation == "flash_attention_2":
1028
+ # 2d mask is passed through the layers
1029
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1030
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1031
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1032
+ # the manual implementation that requires a 4D causal mask in all cases.
1033
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1034
+ attention_mask,
1035
+ (batch_size, seq_length),
1036
+ inputs_embeds,
1037
+ past_key_values_length,
1038
+ )
1039
+ else:
1040
+ # 4d mask is passed through the layers
1041
+ attention_mask = _prepare_4d_causal_attention_mask(
1042
+ attention_mask,
1043
+ (batch_size, seq_length),
1044
+ inputs_embeds,
1045
+ past_key_values_length,
1046
+ sliding_window=self.config.sliding_window,
1047
+ )
1048
+
1049
+ hidden_states = inputs_embeds
1050
+
1051
+ # decoder layers
1052
+ all_hidden_states = () if output_hidden_states else None
1053
+ all_self_attns = () if output_attentions else None
1054
+ next_decoder_cache = None
1055
+
1056
+ for decoder_layer in self.layers:
1057
+ if output_hidden_states:
1058
+ all_hidden_states += (hidden_states,)
1059
+
1060
+ if self.gradient_checkpointing and self.training:
1061
+ layer_outputs = self._gradient_checkpointing_func(
1062
+ decoder_layer.__call__,
1063
+ hidden_states,
1064
+ attention_mask,
1065
+ position_ids,
1066
+ past_key_values,
1067
+ output_attentions,
1068
+ use_cache,
1069
+ )
1070
+ else:
1071
+ layer_outputs = decoder_layer(
1072
+ hidden_states,
1073
+ attention_mask=attention_mask,
1074
+ position_ids=position_ids,
1075
+ past_key_value=past_key_values,
1076
+ output_attentions=output_attentions,
1077
+ use_cache=use_cache,
1078
+ )
1079
+
1080
+ hidden_states = layer_outputs[0]
1081
+
1082
+ if use_cache:
1083
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1084
+
1085
+ if output_attentions:
1086
+ all_self_attns += (layer_outputs[1],)
1087
+
1088
+ hidden_states = self.norm(hidden_states)
1089
+
1090
+ # add hidden states from the last decoder layer
1091
+ if output_hidden_states:
1092
+ all_hidden_states += (hidden_states,)
1093
+
1094
+ next_cache = None
1095
+ if use_cache:
1096
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1097
+
1098
+ if not return_dict:
1099
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1100
+ return BaseModelOutputWithPast(
1101
+ last_hidden_state=hidden_states,
1102
+ past_key_values=next_cache,
1103
+ hidden_states=all_hidden_states,
1104
+ attentions=all_self_attns,
1105
+ )
1106
+
1107
+
1108
+ class QuietForCausalLM(QuietPreTrainedModel):
1109
+ def __init__(self, config):
1110
+ super().__init__(config)
1111
+ self.model = QuietModel(config)
1112
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1113
+ self.mixing_head = nn.Sequential(
1114
+ nn.Linear(config.hidden_size * 2, config.hidden_size),
1115
+ nn.ReLU(),
1116
+ nn.Linear(config.hidden_size, 1),
1117
+ )
1118
+
1119
+ self.max_thoughts = config.max_thoughts
1120
+ self.thought_length = config.thought_length
1121
+ self.use_policy_loss = True
1122
+ self.remove_negative_rewards = True
1123
+
1124
+ self.post_init()
1125
+
1126
+ def calculate_policy_loss(self, thoughts, rewards):
1127
+ thought_log_probs = []
1128
+ for thought in thoughts:
1129
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
1130
+ thought_log_probs.append(thought_log_prob)
1131
+
1132
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
1133
+ thought_probs = torch.exp(thought_log_probs)
1134
+
1135
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
1136
+
1137
+ return policy_loss
1138
+
1139
+ def get_input_embeddings(self):
1140
+ return self.model.embed_tokens
1141
+
1142
+ def set_input_embeddings(self, value):
1143
+ self.model.embed_tokens = value
1144
+
1145
+ def get_output_embeddings(self):
1146
+ return self.lm_head
1147
+
1148
+ def set_output_embeddings(self, new_embeddings):
1149
+ self.lm_head = new_embeddings
1150
+
1151
+ def set_decoder(self, decoder):
1152
+ self.model = decoder
1153
+
1154
+ def get_decoder(self):
1155
+ return self.model
1156
+
1157
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
1158
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1159
+ def forward(
1160
+ self,
1161
+ input_ids: torch.LongTensor = None,
1162
+ attention_mask: Optional[torch.Tensor] = None,
1163
+ position_ids: Optional[torch.LongTensor] = None,
1164
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1165
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1166
+ labels: Optional[torch.LongTensor] = None,
1167
+ use_cache: Optional[bool] = None,
1168
+ output_attentions: Optional[bool] = None,
1169
+ output_hidden_states: Optional[bool] = None,
1170
+ return_dict: Optional[bool] = None,
1171
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1172
+ r"""
1173
+ Args:
1174
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1175
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1176
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1177
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1178
+
1179
+ Returns:
1180
+
1181
+ Example:
1182
+
1183
+ ```python
1184
+ >>> from transformers import AutoTokenizer, QuietForCausalLM
1185
+
1186
+ >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
1187
+ >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
1188
+
1189
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1190
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1191
+
1192
+ >>> # Generate
1193
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1194
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1195
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1196
+ ```"""
1197
+
1198
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1199
+ output_hidden_states = (
1200
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1201
+ )
1202
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1203
+
1204
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1205
+ outputs = self.model(
1206
+ input_ids,
1207
+ attention_mask=attention_mask,
1208
+ position_ids=position_ids,
1209
+ past_key_values=past_key_values,
1210
+ inputs_embeds=inputs_embeds,
1211
+ use_cache=use_cache,
1212
+ output_attentions=output_attentions,
1213
+ output_hidden_states=output_hidden_states,
1214
+ return_dict=return_dict,
1215
+ )
1216
+
1217
+ hidden_states = outputs.last_hidden_state
1218
+ base_logits = self.lm_head(hidden_states)
1219
+
1220
+ thought_ids, thought_embeddings = self.model._generate_thoughts(hidden_states, max_length=self.thought_length)
1221
+ thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
1222
+ thought_logits = self.lm_head(thought_hidden_states)
1223
+
1224
+ mixing_input = torch.cat([hidden_states, thought_hidden_states], dim=-1)
1225
+ mixing_weights = self.mixing_head(mixing_input).squeeze(-1) # (batch_size, seq_length)
1226
+ mixed_logits = base_logits * (1 - mixing_weights.unsqueeze(-1)) + thought_logits * mixing_weights.unsqueeze(-1)
1227
+
1228
+ loss = None
1229
+ if labels is not None:
1230
+ # Shift so that tokens < n predict n
1231
+ shift_logits = mixed_logits[..., :-1, :].contiguous()
1232
+ shift_labels = labels[..., 1:].contiguous()
1233
+ # Flatten the tokens
1234
+ loss_fct = CrossEntropyLoss()
1235
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1236
+
1237
+ if self.use_policy_loss:
1238
+ rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
1239
+ if self.remove_negative_rewards:
1240
+ rewards = torch.clamp(rewards, min=0)
1241
+ policy_loss = self.calculate_policy_loss(thought_ids, rewards)
1242
+ loss = loss + policy_loss
1243
+
1244
+ if not return_dict:
1245
+ output = (mixed_logits,) + outputs[1:]
1246
+ return ((loss,) + output) if loss is not None else output
1247
+
1248
+ return CausalLMOutputWithPast(
1249
+ loss=loss,
1250
+ logits=mixed_logits,
1251
+ past_key_values=outputs.past_key_values,
1252
+ hidden_states=outputs.hidden_states,
1253
+ attentions=outputs.attentions,
1254
+ )
1255
+
1256
+ def prepare_inputs_for_generation(
1257
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1258
+ ):
1259
+ # Omit tokens covered by past_key_values
1260
+ if past_key_values is not None:
1261
+ if isinstance(past_key_values, Cache):
1262
+ cache_length = past_key_values.get_seq_length()
1263
+ past_length = past_key_values.seen_tokens
1264
+ max_cache_length = past_key_values.get_max_length()
1265
+ else:
1266
+ cache_length = past_length = past_key_values[0][0].shape[2]
1267
+ max_cache_length = None
1268
+
1269
+ # Keep only the unprocessed tokens:
1270
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1271
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1272
+ # input)
1273
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1274
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1275
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1276
+ # input_ids based on the past_length.
1277
+ elif past_length < input_ids.shape[1]:
1278
+ input_ids = input_ids[:, past_length:]
1279
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1280
+
1281
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1282
+ if (
1283
+ max_cache_length is not None
1284
+ and attention_mask is not None
1285
+ and cache_length + input_ids.shape[1] > max_cache_length
1286
+ ):
1287
+ attention_mask = attention_mask[:, -max_cache_length:]
1288
+
1289
+ position_ids = kwargs.get("position_ids", None)
1290
+ if attention_mask is not None and position_ids is None:
1291
+ # create position_ids on the fly for batch generation
1292
+ position_ids = attention_mask.long().cumsum(-1) - 1
1293
+ position_ids.masked_fill_(attention_mask == 0, 1)
1294
+ if past_key_values:
1295
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1296
+
1297
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1298
+ if inputs_embeds is not None and past_key_values is None:
1299
+ model_inputs = {"inputs_embeds": inputs_embeds}
1300
+ else:
1301
+ model_inputs = {"input_ids": input_ids}
1302
+
1303
+ model_inputs.update(
1304
+ {
1305
+ "position_ids": position_ids,
1306
+ "past_key_values": past_key_values,
1307
+ "use_cache": kwargs.get("use_cache"),
1308
+ "attention_mask": attention_mask,
1309
+ }
1310
+ )
1311
+ return model_inputs
1312
+
1313
+ @staticmethod
1314
+ def _reorder_cache(past_key_values, beam_idx):
1315
+ reordered_past = ()
1316
+ for layer_past in past_key_values:
1317
+ reordered_past += (
1318
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1319
+ )
1320
+ return reordered_past
1321
+
1322
+
1323
+ @add_start_docstrings(
1324
+ """
1325
+ The Quiet Model transformer with a sequence classification head on top (linear layer).
1326
+
1327
+ [`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1328
+ (e.g. GPT-2) do.
1329
+
1330
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1331
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1332
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1333
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1334
+ each row of the batch).
1335
+ """,
1336
+ QUIET_START_DOCSTRING,
1337
+ )
1338
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
1339
+ class QuietForSequenceClassification(QuietPreTrainedModel):
1340
+ def __init__(self, config):
1341
+ super().__init__(config)
1342
+ self.num_labels = config.num_labels
1343
+ self.model = QuietModel(config)
1344
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1345
+
1346
+ # Initialize weights and apply final processing
1347
+ self.post_init()
1348
+
1349
+ def get_input_embeddings(self):
1350
+ return self.model.embed_tokens
1351
+
1352
+ def set_input_embeddings(self, value):
1353
+ self.model.embed_tokens = value
1354
+
1355
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
1356
+ def forward(
1357
+ self,
1358
+ input_ids: torch.LongTensor = None,
1359
+ attention_mask: Optional[torch.Tensor] = None,
1360
+ position_ids: Optional[torch.LongTensor] = None,
1361
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1362
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1363
+ labels: Optional[torch.LongTensor] = None,
1364
+ use_cache: Optional[bool] = None,
1365
+ output_attentions: Optional[bool] = None,
1366
+ output_hidden_states: Optional[bool] = None,
1367
+ return_dict: Optional[bool] = None,
1368
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1369
+ r"""
1370
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1371
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1372
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1373
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1374
+ """
1375
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1376
+
1377
+ transformer_outputs = self.model(
1378
+ input_ids,
1379
+ attention_mask=attention_mask,
1380
+ position_ids=position_ids,
1381
+ past_key_values=past_key_values,
1382
+ inputs_embeds=inputs_embeds,
1383
+ use_cache=use_cache,
1384
+ output_attentions=output_attentions,
1385
+ output_hidden_states=output_hidden_states,
1386
+ return_dict=return_dict,
1387
+ )
1388
+ hidden_states = transformer_outputs[0]
1389
+ logits = self.score(hidden_states)
1390
+
1391
+ if input_ids is not None:
1392
+ batch_size = input_ids.shape[0]
1393
+ else:
1394
+ batch_size = inputs_embeds.shape[0]
1395
+
1396
+ if self.config.pad_token_id is None and batch_size != 1:
1397
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1398
+ if self.config.pad_token_id is None:
1399
+ sequence_lengths = -1
1400
+ else:
1401
+ if input_ids is not None:
1402
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1403
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1404
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1405
+ sequence_lengths = sequence_lengths.to(logits.device)
1406
+ else:
1407
+ sequence_lengths = -1
1408
+
1409
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1410
+
1411
+ loss = None
1412
+ if labels is not None:
1413
+ labels = labels.to(logits.device)
1414
+ if self.config.problem_type is None:
1415
+ if self.num_labels == 1:
1416
+ self.config.problem_type = "regression"
1417
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1418
+ self.config.problem_type = "single_label_classification"
1419
+ else:
1420
+ self.config.problem_type = "multi_label_classification"
1421
+
1422
+ if self.config.problem_type == "regression":
1423
+ loss_fct = MSELoss()
1424
+ if self.num_labels == 1:
1425
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1426
+ else:
1427
+ loss = loss_fct(pooled_logits, labels)
1428
+ elif self.config.problem_type == "single_label_classification":
1429
+ loss_fct = CrossEntropyLoss()
1430
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1431
+ elif self.config.problem_type == "multi_label_classification":
1432
+ loss_fct = BCEWithLogitsLoss()
1433
+ loss = loss_fct(pooled_logits, labels)
1434
+ if not return_dict:
1435
+ output = (pooled_logits,) + transformer_outputs[1:]
1436
+ return ((loss,) + output) if loss is not None else output
1437
+
1438
+ return SequenceClassifierOutputWithPast(
1439
+ loss=loss,
1440
+ logits=pooled_logits,
1441
+ past_key_values=transformer_outputs.past_key_values,
1442
+ hidden_states=transformer_outputs.hidden_states,
1443
+ attentions=transformer_outputs.attentions,
1444
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }