Joseph Catrambone
First import. Add ControlNetSD21 Laion Face (full, pruned, and safetensors). Add README and samples. Add surrounding tools for example use.
568dc2c
from share import * | |
import pytorch_lightning as pl | |
from torch.utils.data import DataLoader | |
from laion_face_dataset import LaionDataset | |
from cldm.logger import ImageLogger | |
from cldm.model import create_model, load_state_dict | |
# Configs | |
resume_path = './models/controlnet_sd15_laion_face.ckpt' | |
batch_size = 8 | |
logger_freq = 2500 | |
learning_rate = 1e-5 | |
sd_locked = True | |
only_mid_control = False | |
# First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. | |
model = create_model('./models/cldm_v15.yaml').cpu() | |
model.load_state_dict(load_state_dict(resume_path, location='cpu')) | |
model.learning_rate = learning_rate | |
model.sd_locked = sd_locked | |
model.only_mid_control = only_mid_control | |
# Save every so often: | |
ckpt_callback = pl.callbacks.ModelCheckpoint( | |
dirpath="./checkpoints/", | |
filename="controlnet_sd15_laion_face_{epoch}_{step}_{loss}.ckpt", | |
monitor='train/loss_simple_step', | |
save_top_k=5, | |
every_n_train_steps=5000, | |
save_last=True, | |
) | |
# Misc | |
dataset = LaionDataset() | |
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) | |
logger = ImageLogger(batch_frequency=logger_freq) | |
trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger, ckpt_callback]) | |
# Train! | |
trainer.fit(model, dataloader) |