|
--- |
|
license: cc-by-2.0 |
|
datasets: |
|
- CreativeLang/vua20_metaphor |
|
language: |
|
- en |
|
--- |
|
|
|
# Metaphor_Detection_Roberta_Seq |
|
|
|
## Description |
|
|
|
- **Paper:** [FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning](https://aclanthology.org/2023.eacl-main.114.pdf) |
|
|
|
## Model Summary |
|
|
|
Creative Language Toolkit (CLTK) Metadata |
|
- CL Type: Metaphor |
|
- Task Type: detection |
|
- Size: roberta-base (500MB) |
|
- Created time: 2022 |
|
|
|
This model is a easy to use metaphor detection baseline realised with `roberta-base` fine-tuned on [CreativeLang/vua20_metaphor](https://huggingface.co/datasets/CreativeLang/vua20_metaphor) dataset. |
|
|
|
To use this model, please use the `inference.py` in the [FrameBERT repo](https://github.com/liyucheng09/MetaphorFrame). |
|
|
|
Just run: |
|
``` |
|
python inference.py CreativeLang/metaphor_detection_roberta_seq |
|
``` |
|
|
|
Check out `inference.py` to learn how to apply the model on your own data. |
|
|
|
For the details of this model and the dataset used, we refer you to the release [paper](https://aclanthology.org/2023.eacl-main.114.pdf). |
|
|
|
## Metrics |
|
|
|
| Metric | Value | |
|
|----------------------------------|--------------------------| |
|
| eval_loss | 0.2656 | |
|
| eval_accuracy_score | 0.9142 | |
|
| eval_precision | 0.9142 | |
|
| eval_recall | 0.9142 | |
|
| eval_f1 | 0.9142 | |
|
| eval_f1_macro | 0.7315 | |
|
| eval_runtime | 8.9802 | |
|
| eval_samples_per_second | 411.7960 | |
|
| eval_steps_per_second | 51.5580 | |
|
| epoch | 3.0000 | |
|
|
|
|
|
### Citation Information |
|
|
|
If you find this dataset helpful, please cite: |
|
|
|
``` |
|
@article{Li2023FrameBERTCM, |
|
title={FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning}, |
|
author={Yucheng Li and Shunyu Wang and Chenghua Lin and Frank Guerin and Lo{\"i}c Barrault}, |
|
journal={ArXiv}, |
|
year={2023}, |
|
volume={abs/2302.04834} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
If you have any queries, please open an issue or direct your queries to [mail](mailto:yucheng.li@surrey.ac.uk). |