|
import torch
|
|
import torch.nn.functional as F
|
|
from model import MiniGPT
|
|
from dataset import MiniBPETokenizr,SimpleTokenizr
|
|
import json
|
|
import os
|
|
from tokenizers import Tokenizer
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
tokenizer = Tokenizer.from_file("./trained-mini-gpt/tokenizer.json")
|
|
|
|
|
|
model = MiniGPT(vocab_size=tokenizer.get_vocab_size())
|
|
|
|
checkpoint = torch.load("./trained-mini-gpt/mini-gpt.pth", map_location=device)
|
|
model.load_state_dict(checkpoint)
|
|
model.eval().to(device)
|
|
totalparams = sum(p.numel() for p in model.parameters())
|
|
print(f"Model total params: {totalparams:,}")
|
|
|
|
def sample_token(logits, temperature=1.0):
|
|
logits = logits / temperature
|
|
logits = torch.nan_to_num(logits, nan=-1e9)
|
|
probs = F.softmax(logits, dim=-1)
|
|
|
|
if torch.any(torch.isnan(probs)) or torch.any(probs < 0):
|
|
print("⚠️ Invalid probs detected. Using uniform fallback.")
|
|
probs = torch.ones_like(probs) / probs.size(-1)
|
|
|
|
return torch.multinomial(probs, num_samples=1).item()
|
|
|
|
def generate_reply(prompt, max_tokens=100):
|
|
tokens = tokenizer.encode(prompt).ids
|
|
if not tokens:
|
|
print("⚠️ Empty prompt after encoding.")
|
|
return
|
|
input_ids = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device)
|
|
generated = []
|
|
|
|
with torch.no_grad():
|
|
for _ in range(max_tokens):
|
|
logits = model(input_ids)
|
|
logits = logits[:, -1, :]
|
|
next_token = sample_token(logits)
|
|
generated.append(next_token)
|
|
|
|
next_str = tokenizer.id_to_token(next_token)
|
|
encoded_text = tokenizer.encode(next_str).ids
|
|
decoded_text = tokenizer.decode(encoded_text)
|
|
print(decoded_text, end=" ", flush=True)
|
|
|
|
if next_str == "<END>":
|
|
break
|
|
|
|
input_ids = torch.cat([input_ids, torch.tensor([[next_token]]).to(device)], dim=1)
|
|
print()
|
|
|
|
|
|
print("🧠 MiniGPT Chat (type 'exit' to quit')")
|
|
while True:
|
|
user_input = input("User: ")
|
|
if user_input.lower() == "exit":
|
|
break
|
|
prompt = f"^User: {user_input}\nMiniGPT:"
|
|
print("MiniGPT: ", end="", flush=True)
|
|
generate_reply(prompt) |