|
--- |
|
tags: autonlp |
|
language: en |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- Crasher222/autonlp-data-kaggle-test |
|
co2_eq_emissions: 60.744727079482495 |
|
--- |
|
|
|
# Model Finetuned from BERT-base for |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 25805800 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.4422711133956909 |
|
- Accuracy: 0.8615328555811976 |
|
- Macro F1: 0.8642434650461513 |
|
- Micro F1: 0.8615328555811976 |
|
- Weighted F1: 0.8617743626671308 |
|
- Macro Precision: 0.8649112225076049 |
|
- Micro Precision: 0.8615328555811976 |
|
- Weighted Precision: 0.8625407179375096 |
|
- Macro Recall: 0.8640777539828228 |
|
- Micro Recall: 0.8615328555811976 |
|
- Weighted Recall: 0.8615328555811976 |
|
|
|
|
|
## Usage |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Crasher222/kaggle-comp-test") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Crasher222/kaggle-comp-test") |
|
|
|
inputs = tokenizer("I am in love with you", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |