metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: RecurrentPPO
results:
- metrics:
- type: mean_reward
value: 282.21 +/- 11.78
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
RecurrentPPO Agent playing LunarLander-v2
This is a trained model of a RecurrentPPO agent playing LunarLander-v2 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo ppo_lstm --env LunarLander-v2 -orga Corianas -f logs/
python enjoy.py --algo ppo_lstm --env LunarLander-v2 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo_lstm --env LunarLander-v2 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo ppo_lstm --env LunarLander-v2 -f logs/ -orga Corianas
Hyperparameters
OrderedDict([('batch_size', 128),
('ent_coef', 0.01),
('gae_lambda', 0.98),
('gamma', 0.999),
('n_envs', 8),
('n_epochs', 4),
('n_steps', 512),
('n_timesteps', 5000000.0),
('normalize', True),
('policy', 'MlpLstmPolicy'),
('policy_kwargs',
'dict( ortho_init=False, activation_fn=nn.ReLU, '
'lstm_hidden_size=64, enable_critic_lstm=True, '
'net_arch=[dict(pi=[64], vf=[64])] )'),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])