Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,6 @@ language:
|
|
12 |
This is a DPO finetune of Mistral 7b-instruct0.2 following the article: https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac
|
13 |
|
14 |
|
15 |
-
|
16 |
## Model Details
|
17 |
|
18 |
### Model Description
|
@@ -25,39 +24,48 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
25 |
- **Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
|
26 |
|
27 |
|
28 |
-
##
|
29 |
-
|
30 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
31 |
-
|
32 |
-
### Direct Use
|
33 |
-
|
34 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
35 |
|
36 |
-
[
|
37 |
-
|
38 |
-
### Downstream Use [optional]
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
[
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
## How to Get Started with the Model
|
63 |
|
@@ -69,28 +77,54 @@ Use the code below to get started with the model.
|
|
69 |
|
70 |
### Training Data
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
### Training Procedure
|
77 |
|
78 |
-
|
79 |
|
80 |
#### Preprocessing [optional]
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
|
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
#### Speeds, Sizes, Times [optional]
|
90 |
|
91 |
-
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
## Evaluation
|
96 |
|
|
|
12 |
This is a DPO finetune of Mistral 7b-instruct0.2 following the article: https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac
|
13 |
|
14 |
|
|
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
|
|
24 |
- **Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
|
25 |
|
26 |
|
27 |
+
## Instruction format
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
|
|
|
|
30 |
|
31 |
+
E.g.
|
32 |
+
```
|
33 |
+
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
34 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
35 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
36 |
+
```
|
37 |
|
38 |
+
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
|
39 |
|
40 |
+
```python
|
41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
|
43 |
+
device = "cuda" # the device to load the model onto
|
44 |
|
45 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
47 |
|
48 |
+
messages = [
|
49 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
50 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
51 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
52 |
+
]
|
53 |
|
54 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
55 |
|
56 |
+
model_inputs = encodeds.to(device)
|
57 |
+
model.to(device)
|
58 |
|
59 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
60 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
61 |
+
print(decoded[0])
|
62 |
+
```
|
63 |
|
64 |
+
## Model Architecture
|
65 |
+
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
66 |
+
- Grouped-Query Attention
|
67 |
+
- Sliding-Window Attention
|
68 |
+
- Byte-fallback BPE tokenizer
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
|
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
+
Intel/orca_dpo_pairs
|
|
|
|
|
81 |
|
82 |
### Training Procedure
|
83 |
|
84 |
+
https://medium.com/towards-data-science/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac
|
85 |
|
86 |
#### Preprocessing [optional]
|
87 |
|
88 |
+
def chatml_format(example):
|
89 |
+
# Format system
|
90 |
+
if len(example['system']) > 0:
|
91 |
+
message = {"role": "user", "content": f"{example['system']}\n{example['question']}"}
|
92 |
+
prompt = tokenizer.apply_chat_template([message], tokenize=False)
|
93 |
+
else:
|
94 |
+
# Format instruction
|
95 |
+
message = {"role": "user", "content": example['question']}
|
96 |
+
prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)
|
97 |
|
98 |
+
# Format chosen answer
|
99 |
+
chosen = example['chosen'] + tokenizer.eos_token
|
100 |
|
101 |
+
# Format rejected answer
|
102 |
+
rejected = example['rejected'] + tokenizer.eos_token
|
103 |
|
104 |
+
return {
|
105 |
+
"prompt": prompt,
|
106 |
+
"chosen": chosen,
|
107 |
+
"rejected": rejected,
|
108 |
+
}
|
109 |
|
|
|
110 |
|
111 |
+
#### Training Hyperparameters
|
112 |
|
113 |
+
training_args = TrainingArguments(
|
114 |
+
per_device_train_batch_size=4,
|
115 |
+
gradient_accumulation_steps=4,
|
116 |
+
gradient_checkpointing=True,
|
117 |
+
learning_rate=5e-5,
|
118 |
+
lr_scheduler_type="cosine",
|
119 |
+
max_steps=200,
|
120 |
+
save_strategy="no",
|
121 |
+
logging_steps=1,
|
122 |
+
output_dir=new_model,
|
123 |
+
optim="paged_adamw_32bit",
|
124 |
+
warmup_steps=100,
|
125 |
+
bf16=True,
|
126 |
+
report_to="wandb",
|
127 |
+
)
|
128 |
|
129 |
## Evaluation
|
130 |
|