Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- roneneldan/TinyStories
|
5 |
+
---
|
6 |
+
This is a character (english a-z 0-9 and so on) trained model following Andrej karpathy's llama.c project https://github.com/karpathy/llama2.c on both TinyStories and my own internal similar dataset I made. the last 150k is from a subset of cosmopedia I extracted for younger people.
|
7 |
+
|
8 |
+
Trained for 49,152,000,000 tokens
|
9 |
+
|
10 |
+
for it to see/output Uppercase letters this model uses a Shift-Key modifier before the letter to become uppercase, and has never been trained on actual uppercase letters.
|
11 |
+
|
12 |
+
This modifier is β¨ and here are the functions I use to convert from straight text to the modified format and back.
|
13 |
+
```
|
14 |
+
def add_caseifer(text):
|
15 |
+
# Using list comprehension for more efficient concatenation
|
16 |
+
return ''.join(['β¨' + char.lower() if char.isupper() else char for char in text
|
17 |
+
|
18 |
+
def remove_caseifer(text):
|
19 |
+
new_text = ""
|
20 |
+
i = 0
|
21 |
+
while i < len(text):
|
22 |
+
if text[i] == "β¨":
|
23 |
+
if i+1 < len(text):
|
24 |
+
new_text += text[i+1].upper()
|
25 |
+
i += 1
|
26 |
+
else:
|
27 |
+
pass # skip this index
|
28 |
+
else:
|
29 |
+
new_text += text[i]
|
30 |
+
i += 1
|
31 |
+
return new_text
|
32 |
+
```
|
33 |
+
|
34 |
+
As such for test strings to use in chat try using somthing like:
|
35 |
+
```
|
36 |
+
β¨hello, my name is β¨clara and β¨i like
|
37 |
+
```
|
38 |
+
|
39 |
+
Run history:
|
40 |
+
iter βββββββββββββββββββββ
β
β
β
β
β
ββββββββββββββ
|
41 |
+
loss/train ββ
ββ
ββ
ββββββββββββββββββββββββββββββββββ
|
42 |
+
loss/val ββββ
β
βββββββββββββββββββββββββββββββββββ
|
43 |
+
lr ββββββββββββββββββββββββββββββββββββββββ
|
44 |
+
mfu β
β
β
ββ
β
β
β
β
β
ββ
β
β
ββ
β
β
ββ
β
β
β
ββ
β
β
β
β
β
β
β
β
β
β
β
ββ
β
β
|
45 |
+
step_time ββββββββββββββββββββββββββββββββββββββββ
|
46 |
+
tokens βββββββββββββββββββββ
β
β
β
β
β
ββββββββββββββ
|
47 |
+
|
48 |
+
Run summary:
|
49 |
+
iter 500000
|
50 |
+
loss/train 0.48935
|
51 |
+
loss/val 0.45042
|
52 |
+
lr 1e-05
|
53 |
+
mfu 9.31042
|
54 |
+
step_time 63441.47873
|
55 |
+
tokens 49152000000
|
56 |
+
|