CordwainerSmith commited on
Commit
664f8f7
1 Parent(s): 3f112b8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan-v3
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan-v3
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5053
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.9855 | 1.0 | 113 | 1.7934 | 0.52 |
69
+ | 1.3551 | 2.0 | 226 | 1.2638 | 0.68 |
70
+ | 1.0094 | 3.0 | 339 | 0.9340 | 0.76 |
71
+ | 0.9176 | 4.0 | 452 | 0.7845 | 0.78 |
72
+ | 0.6402 | 5.0 | 565 | 0.6458 | 0.81 |
73
+ | 0.3626 | 6.0 | 678 | 0.5620 | 0.85 |
74
+ | 0.4944 | 7.0 | 791 | 0.5078 | 0.82 |
75
+ | 0.1754 | 8.0 | 904 | 0.4793 | 0.81 |
76
+ | 0.2203 | 9.0 | 1017 | 0.4875 | 0.84 |
77
+ | 0.1121 | 10.0 | 1130 | 0.5053 | 0.87 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.31.0
83
+ - Pytorch 2.0.1+cu118
84
+ - Datasets 2.14.0
85
+ - Tokenizers 0.13.3