metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- lg-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: luganda-ner-v6
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lg-ner
type: lg-ner
config: lug
split: test
args: lug
metrics:
- name: Precision
type: precision
value: 0.7679892400806994
- name: Recall
type: recall
value: 0.7669576897246474
- name: F1
type: f1
value: 0.7674731182795699
- name: Accuracy
type: accuracy
value: 0.9394874401045448
luganda-ner-v6
This model is a fine-tuned version of xlm-roberta-base on the lg-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.2845
- Precision: 0.7680
- Recall: 0.7670
- F1: 0.7675
- Accuracy: 0.9395
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 261 | 0.6034 | 0.4624 | 0.2149 | 0.2934 | 0.8369 |
0.6707 | 2.0 | 522 | 0.4082 | 0.7214 | 0.4453 | 0.5507 | 0.8948 |
0.6707 | 3.0 | 783 | 0.3172 | 0.7413 | 0.6179 | 0.6740 | 0.9181 |
0.295 | 4.0 | 1044 | 0.3241 | 0.7305 | 0.6810 | 0.7049 | 0.9124 |
0.295 | 5.0 | 1305 | 0.2784 | 0.7241 | 0.7173 | 0.7206 | 0.9271 |
0.1781 | 6.0 | 1566 | 0.2703 | 0.7643 | 0.7381 | 0.7509 | 0.9331 |
0.1781 | 7.0 | 1827 | 0.2585 | 0.7865 | 0.7670 | 0.7766 | 0.9418 |
0.1172 | 8.0 | 2088 | 0.2696 | 0.8109 | 0.7488 | 0.7786 | 0.9420 |
0.1172 | 9.0 | 2349 | 0.2680 | 0.7792 | 0.7535 | 0.7661 | 0.9422 |
0.0874 | 10.0 | 2610 | 0.2845 | 0.7680 | 0.7670 | 0.7675 | 0.9395 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1