luganda-ner-v5 / README.md
Conrad747's picture
update model card README.md
e2768bd
metadata
license: afl-3.0
tags:
  - generated_from_trainer
datasets:
  - lg-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: luganda-ner-v5
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lg-ner
          type: lg-ner
          config: lug
          split: test
          args: lug
        metrics:
          - name: Precision
            type: precision
            value: 0.8502710027100271
          - name: Recall
            type: recall
            value: 0.8428475486903962
          - name: F1
            type: f1
            value: 0.8465430016863407
          - name: Accuracy
            type: accuracy
            value: 0.959089589080877

luganda-ner-v5

This model is a fine-tuned version of masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 on the lg-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2328
  • Precision: 0.8503
  • Recall: 0.8428
  • F1: 0.8465
  • Accuracy: 0.9591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 261 0.2276 0.7703 0.6441 0.7015 0.9353
0.3176 2.0 522 0.1848 0.8431 0.7542 0.7962 0.9545
0.3176 3.0 783 0.1871 0.8564 0.8173 0.8364 0.9576
0.0753 4.0 1044 0.2015 0.8691 0.8294 0.8488 0.9614
0.0753 5.0 1305 0.2325 0.8616 0.8361 0.8487 0.9584
0.0261 6.0 1566 0.2328 0.8503 0.8428 0.8465 0.9591

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2