|
--- |
|
tags: |
|
- mteb |
|
model-index: |
|
- name: embed-multilingual-light-v3.0 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 70.02985074626865 |
|
- type: ap |
|
value: 33.228065779544146 |
|
- type: f1 |
|
value: 64.27173953207297 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 90.701225 |
|
- type: ap |
|
value: 87.07178174251762 |
|
- type: f1 |
|
value: 90.69168484877625 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 46.550000000000004 |
|
- type: f1 |
|
value: 44.7233215588199 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 53.369 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 44.206988765030744 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 33.913737041277 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 58.544257541214925 |
|
- type: mrr |
|
value: 72.07151651057468 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.79582115243736 |
|
- type: cos_sim_spearman |
|
value: 84.01396250789998 |
|
- type: euclidean_pearson |
|
value: 83.90766476102458 |
|
- type: euclidean_spearman |
|
value: 84.01396250789998 |
|
- type: manhattan_pearson |
|
value: 84.75071274784274 |
|
- type: manhattan_spearman |
|
value: 85.02482891467078 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 78.12337662337663 |
|
- type: f1 |
|
value: 77.48610340227478 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 38.68268504601174 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 32.20870648143671 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 46.259 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 44.555 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 56.564 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 36.162 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 26.185000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 41.547 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 39.042 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 38.086999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 32.088 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 27.006999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 37.336999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 38.011 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 32.287 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 24.804000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 38.055 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 46.665 |
|
- type: f1 |
|
value: 40.77568559660878 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 85.52499999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 36.161 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 66.878 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 85.6372 |
|
- type: ap |
|
value: 80.54846874011302 |
|
- type: f1 |
|
value: 85.61438421821343 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 40.487 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 91.8559051527588 |
|
- type: f1 |
|
value: 91.6271749996447 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 62.17738258093936 |
|
- type: f1 |
|
value: 45.80307070449218 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 67.42434431741762 |
|
- type: f1 |
|
value: 65.39580264698957 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 72.60928043039677 |
|
- type: f1 |
|
value: 72.30912915707411 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 35.17967476592229 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 30.993641089208683 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 31.362481813275295 |
|
- type: mrr |
|
value: 32.43717742343303 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 32.123000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 55.51199999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 87.847 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 49.4973643968247 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 60.2135284243427 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 17.1 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.7330191296952 |
|
- type: cos_sim_spearman |
|
value: 77.03523134004043 |
|
- type: euclidean_pearson |
|
value: 80.86067787185137 |
|
- type: euclidean_spearman |
|
value: 77.03522959536473 |
|
- type: manhattan_pearson |
|
value: 80.76089708603587 |
|
- type: manhattan_spearman |
|
value: 76.86245377437302 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.46387812633851 |
|
- type: cos_sim_spearman |
|
value: 73.21878234127571 |
|
- type: euclidean_pearson |
|
value: 76.82160699895033 |
|
- type: euclidean_spearman |
|
value: 73.21878234127571 |
|
- type: manhattan_pearson |
|
value: 76.75657006349886 |
|
- type: manhattan_spearman |
|
value: 73.19160258034827 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.06411399119807 |
|
- type: cos_sim_spearman |
|
value: 79.49916779764082 |
|
- type: euclidean_pearson |
|
value: 79.3356521660954 |
|
- type: euclidean_spearman |
|
value: 79.49916779764082 |
|
- type: manhattan_pearson |
|
value: 79.04971532119936 |
|
- type: manhattan_spearman |
|
value: 79.16859911220654 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.6940934994372 |
|
- type: cos_sim_spearman |
|
value: 76.9552055757283 |
|
- type: euclidean_pearson |
|
value: 79.52818133592284 |
|
- type: euclidean_spearman |
|
value: 76.9552055757283 |
|
- type: manhattan_pearson |
|
value: 79.35220459438406 |
|
- type: manhattan_spearman |
|
value: 76.85314462036561 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.58608774451231 |
|
- type: cos_sim_spearman |
|
value: 86.42805701554927 |
|
- type: euclidean_pearson |
|
value: 86.01117122595934 |
|
- type: euclidean_spearman |
|
value: 86.42805701554927 |
|
- type: manhattan_pearson |
|
value: 86.01345208923057 |
|
- type: manhattan_spearman |
|
value: 86.43179450307953 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.18733039014667 |
|
- type: cos_sim_spearman |
|
value: 84.3339529564109 |
|
- type: euclidean_pearson |
|
value: 83.54530885349595 |
|
- type: euclidean_spearman |
|
value: 84.3339529564109 |
|
- type: manhattan_pearson |
|
value: 83.47015931913937 |
|
- type: manhattan_spearman |
|
value: 84.22564786654777 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.88402211340522 |
|
- type: cos_sim_spearman |
|
value: 88.6693290310468 |
|
- type: euclidean_pearson |
|
value: 88.24947476618257 |
|
- type: euclidean_spearman |
|
value: 88.6693290310468 |
|
- type: manhattan_pearson |
|
value: 88.24496656367964 |
|
- type: manhattan_spearman |
|
value: 88.52029848819545 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 64.96467575926597 |
|
- type: cos_sim_spearman |
|
value: 65.30666900046252 |
|
- type: euclidean_pearson |
|
value: 66.58031971340725 |
|
- type: euclidean_spearman |
|
value: 65.30666900046252 |
|
- type: manhattan_pearson |
|
value: 66.56530433327998 |
|
- type: manhattan_spearman |
|
value: 65.42121899024113 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.31047656296519 |
|
- type: cos_sim_spearman |
|
value: 85.46101092708824 |
|
- type: euclidean_pearson |
|
value: 85.75896623084044 |
|
- type: euclidean_spearman |
|
value: 85.46101092708824 |
|
- type: manhattan_pearson |
|
value: 85.57323880630182 |
|
- type: manhattan_spearman |
|
value: 85.23375523080594 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 79.89731978284804 |
|
- type: mrr |
|
value: 94.28980424078465 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 67.95 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.85643564356435 |
|
- type: cos_sim_ap |
|
value: 96.59618618212247 |
|
- type: cos_sim_f1 |
|
value: 92.6221335992024 |
|
- type: cos_sim_precision |
|
value: 92.34592445328032 |
|
- type: cos_sim_recall |
|
value: 92.9 |
|
- type: dot_accuracy |
|
value: 99.85643564356435 |
|
- type: dot_ap |
|
value: 96.5961861821225 |
|
- type: dot_f1 |
|
value: 92.6221335992024 |
|
- type: dot_precision |
|
value: 92.34592445328032 |
|
- type: dot_recall |
|
value: 92.9 |
|
- type: euclidean_accuracy |
|
value: 99.85643564356435 |
|
- type: euclidean_ap |
|
value: 96.5961861821225 |
|
- type: euclidean_f1 |
|
value: 92.6221335992024 |
|
- type: euclidean_precision |
|
value: 92.34592445328032 |
|
- type: euclidean_recall |
|
value: 92.9 |
|
- type: manhattan_accuracy |
|
value: 99.85841584158416 |
|
- type: manhattan_ap |
|
value: 96.5578240948512 |
|
- type: manhattan_f1 |
|
value: 92.71523178807946 |
|
- type: manhattan_precision |
|
value: 94.4963655244029 |
|
- type: manhattan_recall |
|
value: 91.0 |
|
- type: max_accuracy |
|
value: 99.85841584158416 |
|
- type: max_ap |
|
value: 96.5961861821225 |
|
- type: max_f1 |
|
value: 92.71523178807946 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 60.84750068050385 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 33.96844721192451 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 50.454280909595205 |
|
- type: mrr |
|
value: 51.24249320940497 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.998438678552517 |
|
- type: cos_sim_spearman |
|
value: 30.409482543506876 |
|
- type: dot_pearson |
|
value: 29.998443850173224 |
|
- type: dot_spearman |
|
value: 30.409482543506876 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 78.93 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 29.482999999999997 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 70.65859999999999 |
|
- type: ap |
|
value: 15.03693738050973 |
|
- type: f1 |
|
value: 54.94379403846167 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 64.4567062818336 |
|
- type: f1 |
|
value: 64.48980729427107 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 42.08554991843959 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.75293556654945 |
|
- type: cos_sim_ap |
|
value: 69.40551043272129 |
|
- type: cos_sim_f1 |
|
value: 65.56335231034026 |
|
- type: cos_sim_precision |
|
value: 65.79856497475419 |
|
- type: cos_sim_recall |
|
value: 65.32981530343008 |
|
- type: dot_accuracy |
|
value: 84.75293556654945 |
|
- type: dot_ap |
|
value: 69.40550704470631 |
|
- type: dot_f1 |
|
value: 65.56335231034026 |
|
- type: dot_precision |
|
value: 65.79856497475419 |
|
- type: dot_recall |
|
value: 65.32981530343008 |
|
- type: euclidean_accuracy |
|
value: 84.75293556654945 |
|
- type: euclidean_ap |
|
value: 69.4055136381454 |
|
- type: euclidean_f1 |
|
value: 65.56335231034026 |
|
- type: euclidean_precision |
|
value: 65.79856497475419 |
|
- type: euclidean_recall |
|
value: 65.32981530343008 |
|
- type: manhattan_accuracy |
|
value: 84.6337247422066 |
|
- type: manhattan_ap |
|
value: 69.13628354134198 |
|
- type: manhattan_f1 |
|
value: 65.46998180715585 |
|
- type: manhattan_precision |
|
value: 60.58361391694726 |
|
- type: manhattan_recall |
|
value: 71.21372031662268 |
|
- type: max_accuracy |
|
value: 84.75293556654945 |
|
- type: max_ap |
|
value: 69.4055136381454 |
|
- type: max_f1 |
|
value: 65.56335231034026 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.04800714091667 |
|
- type: cos_sim_ap |
|
value: 85.84596325009252 |
|
- type: cos_sim_f1 |
|
value: 78.39228527221042 |
|
- type: cos_sim_precision |
|
value: 73.58643518205768 |
|
- type: cos_sim_recall |
|
value: 83.86972590083154 |
|
- type: dot_accuracy |
|
value: 89.04800714091667 |
|
- type: dot_ap |
|
value: 85.8459646697087 |
|
- type: dot_f1 |
|
value: 78.39228527221042 |
|
- type: dot_precision |
|
value: 73.58643518205768 |
|
- type: dot_recall |
|
value: 83.86972590083154 |
|
- type: euclidean_accuracy |
|
value: 89.04800714091667 |
|
- type: euclidean_ap |
|
value: 85.84596376376919 |
|
- type: euclidean_f1 |
|
value: 78.39228527221042 |
|
- type: euclidean_precision |
|
value: 73.58643518205768 |
|
- type: euclidean_recall |
|
value: 83.86972590083154 |
|
- type: manhattan_accuracy |
|
value: 89.0266620095471 |
|
- type: manhattan_ap |
|
value: 85.80124417850608 |
|
- type: manhattan_f1 |
|
value: 78.37817859254879 |
|
- type: manhattan_precision |
|
value: 75.36963321012226 |
|
- type: manhattan_recall |
|
value: 81.63689559593472 |
|
- type: max_accuracy |
|
value: 89.04800714091667 |
|
- type: max_ap |
|
value: 85.8459646697087 |
|
- type: max_f1 |
|
value: 78.39228527221042 |
|
--- |
|
|
|
|
|
# Cohere embed-multilingual-light-v3.0 |
|
|
|
This repository contains the tokenizer for the Cohere `embed-multilingual-light-v3.0` model. See our blogpost [Cohere Embed V3](https://txt.cohere.com/introducing-embed-v3/) for more details on this model. |
|
|
|
You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments. |
|
|
|
## Usage Cohere API |
|
|
|
The following code snippet shows the usage of the Cohere API. Install the cohere SDK via: |
|
``` |
|
pip install -U cohere |
|
``` |
|
|
|
Get your free API key on: www.cohere.com |
|
|
|
|
|
```python |
|
# This snippet shows and example how to use the Cohere Embed V3 models for semantic search. |
|
# Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere |
|
# Get your API key from: www.cohere.com |
|
import cohere |
|
import numpy as np |
|
|
|
cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com |
|
co = cohere.Client(cohere_key) |
|
|
|
docs = ["The capital of France is Paris", |
|
"PyTorch is a machine learning framework based on the Torch library.", |
|
"The average cat lifespan is between 13-17 years"] |
|
|
|
|
|
#Encode your documents with input type 'search_document' |
|
doc_emb = co.embed(docs, input_type="search_document", model="embed-multilingual-light-v3.0").embeddings |
|
doc_emb = np.asarray(doc_emb) |
|
|
|
|
|
#Encode your query with input type 'search_query' |
|
query = "What is Pytorch" |
|
query_emb = co.embed([query], input_type="search_query", model="embed-multilingual-light-v3.0").embeddings |
|
query_emb = np.asarray(query_emb) |
|
query_emb.shape |
|
|
|
#Compute the dot product between query embedding and document embedding |
|
scores = np.dot(query_emb, doc_emb.T)[0] |
|
|
|
#Find the highest scores |
|
max_idx = np.argsort(-scores) |
|
|
|
print(f"Query: {query}") |
|
for idx in max_idx: |
|
print(f"Score: {scores[idx]:.2f}") |
|
print(docs[idx]) |
|
print("--------") |
|
``` |
|
|
|
## Usage AWS SageMaker |
|
The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding. |
|
|
|
## Usage AWS Bedrock |
|
Soon the model will also be available via AWS Bedrock. Stay tuned |
|
|
|
## Private Deployment |
|
You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more. |
|
|
|
## Supported Languages |
|
This model was trained on nearly 1B English training pairs and nearly 0.5B Non-English training pairs from 100+ languages. |
|
|
|
Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing). |