nreimers's picture
Update README.md
b6f5c44
---
tags:
- mteb
model-index:
- name: embed-multilingual-light-v3.0
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 70.02985074626865
- type: ap
value: 33.228065779544146
- type: f1
value: 64.27173953207297
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 90.701225
- type: ap
value: 87.07178174251762
- type: f1
value: 90.69168484877625
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.550000000000004
- type: f1
value: 44.7233215588199
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 53.369
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.206988765030744
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 33.913737041277
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 58.544257541214925
- type: mrr
value: 72.07151651057468
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.79582115243736
- type: cos_sim_spearman
value: 84.01396250789998
- type: euclidean_pearson
value: 83.90766476102458
- type: euclidean_spearman
value: 84.01396250789998
- type: manhattan_pearson
value: 84.75071274784274
- type: manhattan_spearman
value: 85.02482891467078
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 78.12337662337663
- type: f1
value: 77.48610340227478
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.68268504601174
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 32.20870648143671
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 46.259
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 44.555
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 56.564
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 36.162
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 26.185000000000002
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 41.547
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 39.042
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.086999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.088
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 27.006999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 37.336999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.011
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.287
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 24.804000000000002
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.055
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.665
- type: f1
value: 40.77568559660878
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 85.52499999999999
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 36.161
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 66.878
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 85.6372
- type: ap
value: 80.54846874011302
- type: f1
value: 85.61438421821343
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 40.487
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 91.8559051527588
- type: f1
value: 91.6271749996447
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 62.17738258093936
- type: f1
value: 45.80307070449218
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.42434431741762
- type: f1
value: 65.39580264698957
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.60928043039677
- type: f1
value: 72.30912915707411
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 35.17967476592229
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.993641089208683
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.362481813275295
- type: mrr
value: 32.43717742343303
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.123000000000005
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 55.51199999999999
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 87.847
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 49.4973643968247
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 60.2135284243427
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 17.1
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.7330191296952
- type: cos_sim_spearman
value: 77.03523134004043
- type: euclidean_pearson
value: 80.86067787185137
- type: euclidean_spearman
value: 77.03522959536473
- type: manhattan_pearson
value: 80.76089708603587
- type: manhattan_spearman
value: 76.86245377437302
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 80.46387812633851
- type: cos_sim_spearman
value: 73.21878234127571
- type: euclidean_pearson
value: 76.82160699895033
- type: euclidean_spearman
value: 73.21878234127571
- type: manhattan_pearson
value: 76.75657006349886
- type: manhattan_spearman
value: 73.19160258034827
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 79.06411399119807
- type: cos_sim_spearman
value: 79.49916779764082
- type: euclidean_pearson
value: 79.3356521660954
- type: euclidean_spearman
value: 79.49916779764082
- type: manhattan_pearson
value: 79.04971532119936
- type: manhattan_spearman
value: 79.16859911220654
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 80.6940934994372
- type: cos_sim_spearman
value: 76.9552055757283
- type: euclidean_pearson
value: 79.52818133592284
- type: euclidean_spearman
value: 76.9552055757283
- type: manhattan_pearson
value: 79.35220459438406
- type: manhattan_spearman
value: 76.85314462036561
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 85.58608774451231
- type: cos_sim_spearman
value: 86.42805701554927
- type: euclidean_pearson
value: 86.01117122595934
- type: euclidean_spearman
value: 86.42805701554927
- type: manhattan_pearson
value: 86.01345208923057
- type: manhattan_spearman
value: 86.43179450307953
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.18733039014667
- type: cos_sim_spearman
value: 84.3339529564109
- type: euclidean_pearson
value: 83.54530885349595
- type: euclidean_spearman
value: 84.3339529564109
- type: manhattan_pearson
value: 83.47015931913937
- type: manhattan_spearman
value: 84.22564786654777
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.88402211340522
- type: cos_sim_spearman
value: 88.6693290310468
- type: euclidean_pearson
value: 88.24947476618257
- type: euclidean_spearman
value: 88.6693290310468
- type: manhattan_pearson
value: 88.24496656367964
- type: manhattan_spearman
value: 88.52029848819545
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.96467575926597
- type: cos_sim_spearman
value: 65.30666900046252
- type: euclidean_pearson
value: 66.58031971340725
- type: euclidean_spearman
value: 65.30666900046252
- type: manhattan_pearson
value: 66.56530433327998
- type: manhattan_spearman
value: 65.42121899024113
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.31047656296519
- type: cos_sim_spearman
value: 85.46101092708824
- type: euclidean_pearson
value: 85.75896623084044
- type: euclidean_spearman
value: 85.46101092708824
- type: manhattan_pearson
value: 85.57323880630182
- type: manhattan_spearman
value: 85.23375523080594
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 79.89731978284804
- type: mrr
value: 94.28980424078465
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 67.95
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.85643564356435
- type: cos_sim_ap
value: 96.59618618212247
- type: cos_sim_f1
value: 92.6221335992024
- type: cos_sim_precision
value: 92.34592445328032
- type: cos_sim_recall
value: 92.9
- type: dot_accuracy
value: 99.85643564356435
- type: dot_ap
value: 96.5961861821225
- type: dot_f1
value: 92.6221335992024
- type: dot_precision
value: 92.34592445328032
- type: dot_recall
value: 92.9
- type: euclidean_accuracy
value: 99.85643564356435
- type: euclidean_ap
value: 96.5961861821225
- type: euclidean_f1
value: 92.6221335992024
- type: euclidean_precision
value: 92.34592445328032
- type: euclidean_recall
value: 92.9
- type: manhattan_accuracy
value: 99.85841584158416
- type: manhattan_ap
value: 96.5578240948512
- type: manhattan_f1
value: 92.71523178807946
- type: manhattan_precision
value: 94.4963655244029
- type: manhattan_recall
value: 91.0
- type: max_accuracy
value: 99.85841584158416
- type: max_ap
value: 96.5961861821225
- type: max_f1
value: 92.71523178807946
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 60.84750068050385
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.96844721192451
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.454280909595205
- type: mrr
value: 51.24249320940497
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.998438678552517
- type: cos_sim_spearman
value: 30.409482543506876
- type: dot_pearson
value: 29.998443850173224
- type: dot_spearman
value: 30.409482543506876
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 78.93
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 29.482999999999997
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.65859999999999
- type: ap
value: 15.03693738050973
- type: f1
value: 54.94379403846167
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.4567062818336
- type: f1
value: 64.48980729427107
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 42.08554991843959
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.75293556654945
- type: cos_sim_ap
value: 69.40551043272129
- type: cos_sim_f1
value: 65.56335231034026
- type: cos_sim_precision
value: 65.79856497475419
- type: cos_sim_recall
value: 65.32981530343008
- type: dot_accuracy
value: 84.75293556654945
- type: dot_ap
value: 69.40550704470631
- type: dot_f1
value: 65.56335231034026
- type: dot_precision
value: 65.79856497475419
- type: dot_recall
value: 65.32981530343008
- type: euclidean_accuracy
value: 84.75293556654945
- type: euclidean_ap
value: 69.4055136381454
- type: euclidean_f1
value: 65.56335231034026
- type: euclidean_precision
value: 65.79856497475419
- type: euclidean_recall
value: 65.32981530343008
- type: manhattan_accuracy
value: 84.6337247422066
- type: manhattan_ap
value: 69.13628354134198
- type: manhattan_f1
value: 65.46998180715585
- type: manhattan_precision
value: 60.58361391694726
- type: manhattan_recall
value: 71.21372031662268
- type: max_accuracy
value: 84.75293556654945
- type: max_ap
value: 69.4055136381454
- type: max_f1
value: 65.56335231034026
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.04800714091667
- type: cos_sim_ap
value: 85.84596325009252
- type: cos_sim_f1
value: 78.39228527221042
- type: cos_sim_precision
value: 73.58643518205768
- type: cos_sim_recall
value: 83.86972590083154
- type: dot_accuracy
value: 89.04800714091667
- type: dot_ap
value: 85.8459646697087
- type: dot_f1
value: 78.39228527221042
- type: dot_precision
value: 73.58643518205768
- type: dot_recall
value: 83.86972590083154
- type: euclidean_accuracy
value: 89.04800714091667
- type: euclidean_ap
value: 85.84596376376919
- type: euclidean_f1
value: 78.39228527221042
- type: euclidean_precision
value: 73.58643518205768
- type: euclidean_recall
value: 83.86972590083154
- type: manhattan_accuracy
value: 89.0266620095471
- type: manhattan_ap
value: 85.80124417850608
- type: manhattan_f1
value: 78.37817859254879
- type: manhattan_precision
value: 75.36963321012226
- type: manhattan_recall
value: 81.63689559593472
- type: max_accuracy
value: 89.04800714091667
- type: max_ap
value: 85.8459646697087
- type: max_f1
value: 78.39228527221042
---
# Cohere embed-multilingual-light-v3.0
This repository contains the tokenizer for the Cohere `embed-multilingual-light-v3.0` model. See our blogpost [Cohere Embed V3](https://txt.cohere.com/introducing-embed-v3/) for more details on this model.
You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments.
## Usage Cohere API
The following code snippet shows the usage of the Cohere API. Install the cohere SDK via:
```
pip install -U cohere
```
Get your free API key on: www.cohere.com
```python
# This snippet shows and example how to use the Cohere Embed V3 models for semantic search.
# Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere
# Get your API key from: www.cohere.com
import cohere
import numpy as np
cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com
co = cohere.Client(cohere_key)
docs = ["The capital of France is Paris",
"PyTorch is a machine learning framework based on the Torch library.",
"The average cat lifespan is between 13-17 years"]
#Encode your documents with input type 'search_document'
doc_emb = co.embed(docs, input_type="search_document", model="embed-multilingual-light-v3.0").embeddings
doc_emb = np.asarray(doc_emb)
#Encode your query with input type 'search_query'
query = "What is Pytorch"
query_emb = co.embed([query], input_type="search_query", model="embed-multilingual-light-v3.0").embeddings
query_emb = np.asarray(query_emb)
query_emb.shape
#Compute the dot product between query embedding and document embedding
scores = np.dot(query_emb, doc_emb.T)[0]
#Find the highest scores
max_idx = np.argsort(-scores)
print(f"Query: {query}")
for idx in max_idx:
print(f"Score: {scores[idx]:.2f}")
print(docs[idx])
print("--------")
```
## Usage AWS SageMaker
The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding.
## Usage AWS Bedrock
Soon the model will also be available via AWS Bedrock. Stay tuned
## Private Deployment
You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more.
## Supported Languages
This model was trained on nearly 1B English training pairs and nearly 0.5B Non-English training pairs from 100+ languages.
Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing).