metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_Spacy_Custom_ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9918793503
- name: NER Recall
type: recall
value: 0.9965034965
- name: NER F Score
type: f_score
value: 0.9941860465
Feature | Description |
---|---|
Name | en_Spacy_Custom_ner |
Version | 0.0.0 |
spaCy | >=3.5.3,<3.6.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (16 labels for 1 components)
Component | Labels |
---|---|
ner |
AGENT_FALLBACK , BOOK , COMODITY , CONTAINER COUNT , CONTAINER SIZE , CONTAINER SIZE-COUNT , DESTINATION , ENQUIRY , HELP , INCOTERM , KYC , ORIGIN , SEARCH RATES , SHIP , SHIPMENT TYPE , WELCOME_MSG |
Accuracy
Type | Score |
---|---|
ENTS_F |
99.42 |
ENTS_P |
99.19 |
ENTS_R |
99.65 |
TOK2VEC_LOSS |
1794.25 |
NER_LOSS |
53209.43 |