cognitivess
commited on
Commit
•
d7df90a
1
Parent(s):
a7eb06e
Update cognitivess_model/convert_Cognitivess_weights_to_hf.py
Browse files
cognitivess_model/convert_Cognitivess_weights_to_hf.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -19,25 +19,19 @@ import shutil
|
|
19 |
import warnings
|
20 |
|
21 |
import torch
|
22 |
-
from safetensors.torch import load_file as safe_load_file
|
23 |
|
24 |
-
from transformers import
|
25 |
-
|
26 |
-
CognitivessConfig,
|
27 |
-
CognitivessForCausalLM,
|
28 |
-
)
|
29 |
|
30 |
|
31 |
try:
|
32 |
-
from transformers import
|
33 |
-
|
34 |
-
tokenizer_class = LlamaTokenizerFast
|
35 |
except ImportError as e:
|
36 |
warnings.warn(e)
|
37 |
warnings.warn(
|
38 |
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
39 |
)
|
40 |
-
|
41 |
|
42 |
"""
|
43 |
Sample usage:
|
@@ -50,17 +44,48 @@ python src/transformers/models/Cognitivess/convert_Cognitivess_weights_to_hf.py
|
|
50 |
Thereafter, models can be loaded via:
|
51 |
|
52 |
```py
|
53 |
-
from transformers import CognitivessForCausalLM,
|
54 |
|
55 |
model = CognitivessForCausalLM.from_pretrained("/output/path")
|
56 |
-
tokenizer =
|
57 |
```
|
58 |
|
59 |
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
60 |
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""
|
62 |
|
63 |
-
NUM_SHARDS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
|
@@ -77,24 +102,22 @@ def write_json(text, path):
|
|
77 |
json.dump(text, f)
|
78 |
|
79 |
|
80 |
-
def write_model(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
os.makedirs(model_path, exist_ok=True)
|
86 |
tmp_model_path = os.path.join(model_path, "tmp")
|
87 |
os.makedirs(tmp_model_path, exist_ok=True)
|
88 |
|
89 |
params = read_json(os.path.join(input_base_path, "params.json"))
|
90 |
-
num_shards = NUM_SHARDS[model_size]
|
91 |
-
|
92 |
-
sliding_window = params.get("sliding_window", None)
|
93 |
-
|
94 |
-
# For some reason this is a string in the params.json
|
95 |
-
if sliding_window is not None:
|
96 |
-
sliding_window = int(sliding_window)
|
97 |
-
|
98 |
n_layers = params["n_layers"]
|
99 |
n_heads = params["n_heads"]
|
100 |
n_heads_per_shard = n_heads // num_shards
|
@@ -102,97 +125,128 @@ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, sa
|
|
102 |
dims_per_head = dim // n_heads
|
103 |
base = params.get("rope_theta", 10000.0)
|
104 |
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
|
114 |
-
|
115 |
-
key_value_dim = dims_per_head *
|
116 |
else: # compatibility with other checkpoints
|
117 |
num_key_value_heads = n_heads
|
118 |
-
|
119 |
-
key_value_dim =
|
|
|
120 |
|
121 |
# permute for sliced rotary
|
122 |
-
def permute(w, n_heads
|
123 |
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
|
124 |
|
125 |
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
130 |
else:
|
|
|
131 |
loaded = [
|
132 |
-
torch.load(os.path.join(input_base_path,
|
133 |
-
for
|
|
|
134 |
]
|
135 |
param_count = 0
|
136 |
index_dict = {"weight_map": {}}
|
137 |
for layer_i in range(n_layers):
|
138 |
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
f"layers.{layer_i}.
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
[
|
156 |
-
loaded[i][f"layers.{layer_i}.attention.
|
157 |
-
|
158 |
-
],
|
159 |
-
dim=0,
|
160 |
-
).reshape(dim, dim)
|
161 |
-
)
|
162 |
-
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
163 |
-
torch.cat(
|
164 |
-
[
|
165 |
-
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
|
166 |
-
num_local_key_value_heads, dims_per_head, dim
|
167 |
)
|
168 |
-
for i in range(
|
169 |
],
|
170 |
dim=0,
|
171 |
-
).reshape(key_value_dim, dim)
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
186 |
-
)
|
187 |
-
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
188 |
-
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
189 |
-
)
|
190 |
-
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
191 |
-
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
192 |
-
)
|
193 |
-
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
194 |
-
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
195 |
-
)
|
196 |
|
197 |
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
198 |
for k, v in state_dict.items():
|
@@ -201,11 +255,22 @@ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, sa
|
|
201 |
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
202 |
|
203 |
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
for k, v in state_dict.items():
|
211 |
index_dict["weight_map"][k] = filename
|
@@ -215,9 +280,11 @@ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, sa
|
|
215 |
# Write configs
|
216 |
index_dict["metadata"] = {"total_size": param_count * 2}
|
217 |
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
|
|
|
|
218 |
config = CognitivessConfig(
|
219 |
hidden_size=dim,
|
220 |
-
intermediate_size=
|
221 |
num_attention_heads=params["n_heads"],
|
222 |
num_hidden_layers=params["n_layers"],
|
223 |
rms_norm_eps=params["norm_eps"],
|
@@ -225,7 +292,8 @@ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, sa
|
|
225 |
vocab_size=vocab_size,
|
226 |
rope_theta=base,
|
227 |
max_position_embeddings=max_position_embeddings,
|
228 |
-
|
|
|
229 |
)
|
230 |
config.save_pretrained(tmp_model_path)
|
231 |
|
@@ -240,16 +308,58 @@ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, sa
|
|
240 |
del model.config._name_or_path
|
241 |
model.config.torch_dtype = torch.float16
|
242 |
print("Saving in the Transformers format.")
|
243 |
-
|
244 |
model.save_pretrained(model_path, safe_serialization=safe_serialization)
|
245 |
-
shutil.rmtree(tmp_model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
|
248 |
-
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
249 |
-
|
|
|
|
|
|
|
|
|
250 |
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
251 |
-
tokenizer = tokenizer_class(input_tokenizer_path)
|
252 |
tokenizer.save_pretrained(tokenizer_path)
|
|
|
253 |
|
254 |
|
255 |
def main():
|
@@ -260,30 +370,45 @@ def main():
|
|
260 |
)
|
261 |
parser.add_argument(
|
262 |
"--model_size",
|
263 |
-
|
264 |
-
help="'f' models correspond to the finetuned versions, and are specific to the Cognitivess2 official release. For more details on Cognitivess2, checkout the original repo: https://huggingface.co/meta-Cognitivess",
|
265 |
)
|
266 |
parser.add_argument(
|
267 |
"--output_dir",
|
268 |
help="Location to write HF model and tokenizer",
|
269 |
)
|
270 |
-
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
|
271 |
parser.add_argument(
|
272 |
-
"--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
)
|
274 |
args = parser.parse_args()
|
|
|
|
|
275 |
spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
|
|
276 |
if args.model_size != "tokenizer_only":
|
277 |
write_model(
|
278 |
model_path=args.output_dir,
|
279 |
input_base_path=args.input_dir,
|
280 |
model_size=args.model_size,
|
281 |
safe_serialization=args.safe_serialization,
|
282 |
-
|
283 |
-
|
|
|
284 |
)
|
285 |
-
else:
|
286 |
-
write_tokenizer(args.output_dir, spm_path)
|
287 |
|
288 |
|
289 |
if __name__ == "__main__":
|
|
|
1 |
+
# Copyright 2022 Cognitivess and The HuggingFace Inc. team. All rights reserved.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
19 |
import warnings
|
20 |
|
21 |
import torch
|
|
|
22 |
|
23 |
+
from transformers import CognitivessConfig, CognitivessForCausalLM, CognitivessTokenizer, PreTrainedTokenizerFast
|
24 |
+
from transformers.convert_slow_tokenizer import TikTokenConverter
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
try:
|
28 |
+
from transformers import CognitivessTokenizerFast
|
|
|
|
|
29 |
except ImportError as e:
|
30 |
warnings.warn(e)
|
31 |
warnings.warn(
|
32 |
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
33 |
)
|
34 |
+
CognitivessTokenizerFast = None
|
35 |
|
36 |
"""
|
37 |
Sample usage:
|
|
|
44 |
Thereafter, models can be loaded via:
|
45 |
|
46 |
```py
|
47 |
+
from transformers import CognitivessForCausalLM, CognitivessTokenizer
|
48 |
|
49 |
model = CognitivessForCausalLM.from_pretrained("/output/path")
|
50 |
+
tokenizer = CognitivessTokenizer.from_pretrained("/output/path")
|
51 |
```
|
52 |
|
53 |
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
54 |
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
55 |
+
|
56 |
+
If you want you tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:
|
57 |
+
|
58 |
+
```py
|
59 |
+
from tokenizers import processors
|
60 |
+
bos = "<|begin_of_text|>"
|
61 |
+
tokenizer._tokenizers.post_processor = processors.Sequence(
|
62 |
+
[
|
63 |
+
processors.ByteLevel(trim_offsets=False),
|
64 |
+
processors.TemplateProcessing(
|
65 |
+
single=f"{bos}:0 $A:0",
|
66 |
+
pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
|
67 |
+
special_tokens=[
|
68 |
+
(bos, tokenizer.encode(bos)),
|
69 |
+
],
|
70 |
+
),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
```
|
74 |
"""
|
75 |
|
76 |
+
NUM_SHARDS = {
|
77 |
+
"7B": 1,
|
78 |
+
"8B": 1,
|
79 |
+
"8Bf": 1,
|
80 |
+
"7Bf": 1,
|
81 |
+
"13B": 2,
|
82 |
+
"13Bf": 2,
|
83 |
+
"34B": 4,
|
84 |
+
"30B": 4,
|
85 |
+
"65B": 8,
|
86 |
+
"70B": 8,
|
87 |
+
"70Bf": 8,
|
88 |
+
}
|
89 |
|
90 |
|
91 |
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
|
|
|
102 |
json.dump(text, f)
|
103 |
|
104 |
|
105 |
+
def write_model(
|
106 |
+
model_path,
|
107 |
+
input_base_path,
|
108 |
+
model_size=None,
|
109 |
+
safe_serialization=True,
|
110 |
+
Cognitivess_version=1,
|
111 |
+
vocab_size=None,
|
112 |
+
num_shards=None,
|
113 |
+
):
|
114 |
os.makedirs(model_path, exist_ok=True)
|
115 |
tmp_model_path = os.path.join(model_path, "tmp")
|
116 |
os.makedirs(tmp_model_path, exist_ok=True)
|
117 |
|
118 |
params = read_json(os.path.join(input_base_path, "params.json"))
|
119 |
+
num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
|
120 |
+
params = params.get("model", params)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
n_layers = params["n_layers"]
|
122 |
n_heads = params["n_heads"]
|
123 |
n_heads_per_shard = n_heads // num_shards
|
|
|
125 |
dims_per_head = dim // n_heads
|
126 |
base = params.get("rope_theta", 10000.0)
|
127 |
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
128 |
+
if base > 10000.0 and Cognitivess_version != 3:
|
129 |
+
max_position_embeddings = 16384
|
130 |
+
else:
|
131 |
+
# Depending on the Cognitivess version, the default max_position_embeddings has different values.
|
132 |
+
if Cognitivess_version == 1:
|
133 |
+
max_position_embeddings = 2048
|
134 |
+
elif Cognitivess_version == 2:
|
135 |
+
max_position_embeddings = 4096
|
136 |
+
elif Cognitivess_version == 3:
|
137 |
+
max_position_embeddings = 8192
|
138 |
+
|
139 |
+
vocab_size = vocab_size if vocab_size is not None else 32000
|
140 |
+
if params.get("n_kv_heads", None) is not None:
|
141 |
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
|
142 |
+
num_key_value_heads_per_shard = num_key_value_heads // num_shards
|
143 |
+
key_value_dim = dims_per_head * num_key_value_heads
|
144 |
else: # compatibility with other checkpoints
|
145 |
num_key_value_heads = n_heads
|
146 |
+
num_key_value_heads_per_shard = n_heads_per_shard
|
147 |
+
key_value_dim = dims_per_head * num_key_value_heads
|
148 |
+
print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
|
149 |
|
150 |
# permute for sliced rotary
|
151 |
+
def permute(w, n_heads, dim1=dim, dim2=dim):
|
152 |
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
|
153 |
|
154 |
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
155 |
+
# Load weights
|
156 |
+
if num_shards == 1:
|
157 |
+
# Not sharded
|
158 |
+
# (The sharded implementation would also work, but this is simpler.)
|
159 |
+
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
160 |
else:
|
161 |
+
# Sharded
|
162 |
loaded = [
|
163 |
+
torch.load(os.path.join(input_base_path, file), map_location="cpu")
|
164 |
+
for file in os.listdir(input_base_path)
|
165 |
+
if file.endswith(".pth")
|
166 |
]
|
167 |
param_count = 0
|
168 |
index_dict = {"weight_map": {}}
|
169 |
for layer_i in range(n_layers):
|
170 |
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
171 |
+
if num_shards == 1:
|
172 |
+
# Unsharded
|
173 |
+
state_dict = {
|
174 |
+
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
175 |
+
loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
|
176 |
+
),
|
177 |
+
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
178 |
+
loaded[f"layers.{layer_i}.attention.wk.weight"],
|
179 |
+
n_heads=num_key_value_heads,
|
180 |
+
dim1=key_value_dim,
|
181 |
+
),
|
182 |
+
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
183 |
+
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
184 |
+
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
185 |
+
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
186 |
+
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
187 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
188 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
# Sharded
|
192 |
+
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
|
193 |
+
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
|
194 |
+
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
|
195 |
+
|
196 |
+
state_dict = {
|
197 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
|
198 |
+
f"layers.{layer_i}.attention_norm.weight"
|
199 |
+
].clone(),
|
200 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
201 |
+
f"layers.{layer_i}.ffn_norm.weight"
|
202 |
+
].clone(),
|
203 |
+
}
|
204 |
+
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
205 |
+
torch.cat(
|
206 |
+
[
|
207 |
+
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
208 |
+
for i in range(len(loaded))
|
209 |
+
],
|
210 |
+
dim=0,
|
211 |
+
).reshape(dim, dim),
|
212 |
+
n_heads=n_heads,
|
213 |
+
)
|
214 |
+
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
215 |
+
torch.cat(
|
216 |
+
[
|
217 |
+
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
|
218 |
+
num_key_value_heads_per_shard, dims_per_head, dim
|
219 |
+
)
|
220 |
+
for i in range(len(loaded))
|
221 |
+
],
|
222 |
+
dim=0,
|
223 |
+
).reshape(key_value_dim, dim),
|
224 |
+
num_key_value_heads,
|
225 |
+
key_value_dim,
|
226 |
+
dim,
|
227 |
+
)
|
228 |
+
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
229 |
[
|
230 |
+
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
|
231 |
+
num_key_value_heads_per_shard, dims_per_head, dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
)
|
233 |
+
for i in range(len(loaded))
|
234 |
],
|
235 |
dim=0,
|
236 |
+
).reshape(key_value_dim, dim)
|
237 |
+
|
238 |
+
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
239 |
+
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
|
240 |
+
)
|
241 |
+
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
242 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
|
243 |
+
)
|
244 |
+
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
245 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
|
246 |
+
)
|
247 |
+
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
248 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
|
249 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
252 |
for k, v in state_dict.items():
|
|
|
255 |
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
256 |
|
257 |
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
258 |
+
if num_shards == 1:
|
259 |
+
# Unsharded
|
260 |
+
state_dict = {
|
261 |
+
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
262 |
+
"model.norm.weight": loaded["norm.weight"],
|
263 |
+
"lm_head.weight": loaded["output.weight"],
|
264 |
+
}
|
265 |
+
else:
|
266 |
+
concat_dim = 0 if Cognitivess_version == 3 else 1
|
267 |
+
state_dict = {
|
268 |
+
"model.norm.weight": loaded[0]["norm.weight"],
|
269 |
+
"model.embed_tokens.weight": torch.cat(
|
270 |
+
[loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
|
271 |
+
),
|
272 |
+
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
|
273 |
+
}
|
274 |
|
275 |
for k, v in state_dict.items():
|
276 |
index_dict["weight_map"][k] = filename
|
|
|
280 |
# Write configs
|
281 |
index_dict["metadata"] = {"total_size": param_count * 2}
|
282 |
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
283 |
+
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
|
284 |
+
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
|
285 |
config = CognitivessConfig(
|
286 |
hidden_size=dim,
|
287 |
+
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
|
288 |
num_attention_heads=params["n_heads"],
|
289 |
num_hidden_layers=params["n_layers"],
|
290 |
rms_norm_eps=params["norm_eps"],
|
|
|
292 |
vocab_size=vocab_size,
|
293 |
rope_theta=base,
|
294 |
max_position_embeddings=max_position_embeddings,
|
295 |
+
bos_token_id=128000 if Cognitivess_version == 3 else 1,
|
296 |
+
eos_token_id=128001 if Cognitivess_version == 3 else 2,
|
297 |
)
|
298 |
config.save_pretrained(tmp_model_path)
|
299 |
|
|
|
308 |
del model.config._name_or_path
|
309 |
model.config.torch_dtype = torch.float16
|
310 |
print("Saving in the Transformers format.")
|
|
|
311 |
model.save_pretrained(model_path, safe_serialization=safe_serialization)
|
312 |
+
shutil.rmtree(tmp_model_path, ignore_errors=True)
|
313 |
+
|
314 |
+
|
315 |
+
class Cognitivess3Converter(TikTokenConverter):
|
316 |
+
def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
|
317 |
+
super().__init__(vocab_file, **kwargs)
|
318 |
+
tokenizer = self.converted()
|
319 |
+
chat_template = (
|
320 |
+
"{% set loop_messages = messages %}"
|
321 |
+
"{% for message in loop_messages %}"
|
322 |
+
"{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}"
|
323 |
+
"{% if loop.index0 == 0 %}"
|
324 |
+
"{% set content = bos_token + content %}"
|
325 |
+
"{% endif %}"
|
326 |
+
"{{ content }}"
|
327 |
+
"{% endfor %}"
|
328 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
|
329 |
+
)
|
330 |
+
num_reserved_special_tokens = 256
|
331 |
+
special_tokens = [
|
332 |
+
"<|begin_of_text|>",
|
333 |
+
"<|end_of_text|>",
|
334 |
+
"<|reserved_special_token_0|>",
|
335 |
+
"<|reserved_special_token_1|>",
|
336 |
+
"<|reserved_special_token_2|>",
|
337 |
+
"<|reserved_special_token_3|>",
|
338 |
+
"<|start_header_id|>",
|
339 |
+
"<|end_header_id|>",
|
340 |
+
"<|reserved_special_token_4|>",
|
341 |
+
"<|eot_id|>", # end of turn
|
342 |
+
] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
|
343 |
+
tokenizer.add_special_tokens(special_tokens)
|
344 |
+
|
345 |
+
self.tokenizer = PreTrainedTokenizerFast(
|
346 |
+
tokenizer_object=tokenizer,
|
347 |
+
bos_token="<|begin_of_text|>",
|
348 |
+
eos_token="<|end_of_text|>",
|
349 |
+
chat_template=chat_template,
|
350 |
+
model_input_names=["input_ids", "attention_mask"],
|
351 |
+
)
|
352 |
|
353 |
|
354 |
+
def write_tokenizer(tokenizer_path, input_tokenizer_path, Cognitivess_version=2):
|
355 |
+
tokenizer_class = CognitivessTokenizer if CognitivessTokenizerFast is None else CognitivessTokenizerFast
|
356 |
+
if Cognitivess_version == 3:
|
357 |
+
tokenizer = Cognitivess3Converter(input_tokenizer_path).tokenizer
|
358 |
+
else:
|
359 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
360 |
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
|
|
361 |
tokenizer.save_pretrained(tokenizer_path)
|
362 |
+
return tokenizer
|
363 |
|
364 |
|
365 |
def main():
|
|
|
370 |
)
|
371 |
parser.add_argument(
|
372 |
"--model_size",
|
373 |
+
default=None,
|
374 |
+
help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Cognitivess2 official release. For more details on Cognitivess2, checkout the original repo: https://huggingface.co/meta-Cognitivess",
|
375 |
)
|
376 |
parser.add_argument(
|
377 |
"--output_dir",
|
378 |
help="Location to write HF model and tokenizer",
|
379 |
)
|
|
|
380 |
parser.add_argument(
|
381 |
+
"--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`."
|
382 |
+
)
|
383 |
+
# Different Cognitivess versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
|
384 |
+
parser.add_argument(
|
385 |
+
"--Cognitivess_version",
|
386 |
+
choices=[1, 2, 3],
|
387 |
+
default=1,
|
388 |
+
type=int,
|
389 |
+
help="Version of the Cognitivess model to convert. Currently supports Cognitivess1 and Cognitivess2. Controls the context size",
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--num_shards",
|
393 |
+
default=None,
|
394 |
+
type=int,
|
395 |
+
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
|
396 |
)
|
397 |
args = parser.parse_args()
|
398 |
+
if args.model_size is None and args.num_shards is None:
|
399 |
+
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
|
400 |
spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
401 |
+
vocab_size = len(write_tokenizer(args.output_dir, spm_path, Cognitivess_version=args.Cognitivess_version))
|
402 |
if args.model_size != "tokenizer_only":
|
403 |
write_model(
|
404 |
model_path=args.output_dir,
|
405 |
input_base_path=args.input_dir,
|
406 |
model_size=args.model_size,
|
407 |
safe_serialization=args.safe_serialization,
|
408 |
+
Cognitivess_version=args.Cognitivess_version,
|
409 |
+
vocab_size=vocab_size,
|
410 |
+
num_shards=args.num_shards,
|
411 |
)
|
|
|
|
|
412 |
|
413 |
|
414 |
if __name__ == "__main__":
|