cognitivess
commited on
Update cognitivess_model/modeling_cognitivess.py
Browse files
cognitivess_model/modeling_cognitivess.py
CHANGED
@@ -1,14 +1,116 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
|
3 |
from transformers import PreTrainedModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
super().__init__(config)
|
8 |
-
self.
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
logits = self.lm_head(outputs)
|
14 |
-
return logits
|
|
|
1 |
+
# cognitivess_model/modeling_cognitivess.py
|
2 |
+
|
3 |
import torch
|
4 |
+
import torch.nn as nn
|
5 |
from transformers import PreTrainedModel
|
6 |
+
from .configuration_cognitivess import CognitivessConfig
|
7 |
+
|
8 |
+
class MultiHeadAttention(nn.Module):
|
9 |
+
def __init__(self, hidden_size, num_attention_heads, dropout_prob=0.0):
|
10 |
+
super().__init__()
|
11 |
+
self.num_attention_heads = num_attention_heads
|
12 |
+
self.attention_head_size = hidden_size // num_attention_heads
|
13 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
14 |
+
|
15 |
+
self.query = nn.Linear(hidden_size, self.all_head_size)
|
16 |
+
self.key = nn.Linear(hidden_size, self.all_head_size)
|
17 |
+
self.value = nn.Linear(hidden_size, self.all_head_size)
|
18 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
19 |
+
|
20 |
+
self.dropout = nn.Dropout(dropout_prob)
|
21 |
+
|
22 |
+
def forward(self, hidden_states, attention_mask=None):
|
23 |
+
batch_size, seq_length, hidden_size = hidden_states.size()
|
24 |
+
|
25 |
+
query_layer = self.query(hidden_states).view(batch_size, seq_length, self.num_attention_heads, self.attention_head_size).transpose(1, 2)
|
26 |
+
key_layer = self.key(hidden_states).view(batch_size, seq_length, self.num_attention_heads, self.attention_head_size).transpose(1, 2)
|
27 |
+
value_layer = self.value(hidden_states).view(batch_size, seq_length, self.num_attention_heads, self.attention_head_size).transpose(1, 2)
|
28 |
+
|
29 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
30 |
+
attention_scores = attention_scores / torch.sqrt(torch.tensor(self.attention_head_size, dtype=torch.float32))
|
31 |
+
|
32 |
+
if attention_mask is not None:
|
33 |
+
attention_scores = attention_scores + attention_mask
|
34 |
+
|
35 |
+
attention_probs = torch.nn.functional.softmax(attention_scores, dim=-1)
|
36 |
+
attention_probs = self.dropout(attention_probs)
|
37 |
+
|
38 |
+
context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2).contiguous().view(batch_size, seq_length, hidden_size)
|
39 |
+
output_layer = self.dense(context_layer)
|
40 |
+
|
41 |
+
return output_layer
|
42 |
+
|
43 |
+
class FeedForward(nn.Module):
|
44 |
+
def __init__(self, hidden_size, intermediate_size, hidden_act, mlp_bias):
|
45 |
+
super().__init__()
|
46 |
+
self.dense = nn.Linear(hidden_size, intermediate_size, bias=mlp_bias)
|
47 |
+
self.activation = nn.SiLU() if hidden_act == "silu" else nn.ReLU()
|
48 |
+
self.output = nn.Linear(intermediate_size, hidden_size, bias=mlp_bias)
|
49 |
|
50 |
+
def forward(self, hidden_states):
|
51 |
+
hidden_states = self.dense(hidden_states)
|
52 |
+
hidden_states = self.activation(hidden_states)
|
53 |
+
hidden_states = self.output(hidden_states)
|
54 |
+
return hidden_states
|
55 |
+
|
56 |
+
class TransformerBlock(nn.Module):
|
57 |
+
def __init__(self, hidden_size, num_attention_heads, intermediate_size, hidden_act, layer_norm_eps, mlp_bias, attention_dropout):
|
58 |
+
super().__init__()
|
59 |
+
self.attention = MultiHeadAttention(hidden_size, num_attention_heads, dropout_prob=attention_dropout)
|
60 |
+
self.feed_forward = FeedForward(hidden_size, intermediate_size, hidden_act, mlp_bias)
|
61 |
+
self.layer_norm1 = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
62 |
+
self.layer_norm2 = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
63 |
+
self.dropout = nn.Dropout(0.1)
|
64 |
+
|
65 |
+
def forward(self, hidden_states, attention_mask=None):
|
66 |
+
# Attention
|
67 |
+
attention_output = self.attention(hidden_states, attention_mask)
|
68 |
+
hidden_states = self.layer_norm1(hidden_states + attention_output)
|
69 |
+
|
70 |
+
# Feed Forward
|
71 |
+
feed_forward_output = self.feed_forward(hidden_states)
|
72 |
+
hidden_states = self.layer_norm2(hidden_states + feed_forward_output)
|
73 |
+
|
74 |
+
return hidden_states
|
75 |
+
|
76 |
+
class CognitivessModel(PreTrainedModel):
|
77 |
+
def __init__(self, config: CognitivessConfig):
|
78 |
super().__init__(config)
|
79 |
+
self.config = config
|
80 |
+
|
81 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
82 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
83 |
+
self.layers = nn.ModuleList([
|
84 |
+
TransformerBlock(
|
85 |
+
config.hidden_size,
|
86 |
+
config.num_attention_heads,
|
87 |
+
config.intermediate_size,
|
88 |
+
config.hidden_act,
|
89 |
+
config.layer_norm_eps,
|
90 |
+
config.mlp_bias,
|
91 |
+
config.attention_dropout
|
92 |
+
)
|
93 |
+
for _ in range(config.num_hidden_layers)
|
94 |
+
])
|
95 |
+
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
|
96 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
97 |
+
self.activation = nn.SiLU() if config.hidden_act == "silu" else nn.ReLU()
|
98 |
+
|
99 |
+
def forward(self, input_ids, attention_mask=None):
|
100 |
+
# Embeddings
|
101 |
+
embeddings = self.embeddings(input_ids)
|
102 |
+
position_ids = torch.arange(input_ids.size(1), dtype=torch.long, device=input_ids.device)
|
103 |
+
position_embeddings = self.position_embeddings(position_ids)
|
104 |
+
embeddings = embeddings + position_embeddings
|
105 |
+
|
106 |
+
# Transformer Layers
|
107 |
+
hidden_states = embeddings
|
108 |
+
for layer in self.layers:
|
109 |
+
hidden_states = layer(hidden_states, attention_mask)
|
110 |
+
|
111 |
+
# Pooler
|
112 |
+
pooled_output = self.pooler(hidden_states[:, 0])
|
113 |
+
return pooled_output
|
114 |
|
115 |
+
# Define CognitivessForCausalLM as an alias to CognitivessModel if needed
|
116 |
+
CognitivessForCausalLM = CognitivessModel
|
|
|
|