jasonfang3900
commited on
Upload tokenization_teleflm.py with huggingface_hub
Browse files- tokenization_teleflm.py +403 -0
tokenization_teleflm.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for Tele-FLM."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
import re
|
28 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
29 |
+
from transformers import AddedToken, PreTrainedTokenizer
|
30 |
+
from transformers.utils import logging
|
31 |
+
from transformers.tokenization_utils_base import TextInput
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
36 |
+
|
37 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
38 |
+
"vocab_file": {},
|
39 |
+
"tokenizer_file": {},
|
40 |
+
}
|
41 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
42 |
+
"teleflm-tokenizer": 8192,
|
43 |
+
}
|
44 |
+
SPIECE_UNDERLINE = "▁"
|
45 |
+
|
46 |
+
|
47 |
+
class TeleFLMTokenizer(PreTrainedTokenizer):
|
48 |
+
"""
|
49 |
+
Construct a Tele-FLM tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
50 |
+
no padding token in the original model.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_file (`str`):
|
54 |
+
Path to the vocabulary file.
|
55 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
56 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
57 |
+
token instead.
|
58 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
59 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
60 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
61 |
+
The end of sequence token.
|
62 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
63 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
64 |
+
attention mechanisms or loss computation.
|
65 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
66 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
67 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
68 |
+
to set:
|
69 |
+
|
70 |
+
- `enable_sampling`: Enable subword regularization.
|
71 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
72 |
+
|
73 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
74 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
75 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
76 |
+
using forward-filtering-and-backward-sampling algorithm.
|
77 |
+
|
78 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
79 |
+
BPE-dropout.
|
80 |
+
|
81 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
83 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
85 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
87 |
+
extra spaces.
|
88 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not to add spaces between special tokens.
|
90 |
+
|
91 |
+
"""
|
92 |
+
|
93 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
94 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
95 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
96 |
+
model_input_names = ["input_ids", "attention_mask"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_file,
|
101 |
+
bos_token="<s>",
|
102 |
+
eos_token="</s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token=None,
|
105 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
106 |
+
add_bos_token=False,
|
107 |
+
add_eos_token=False,
|
108 |
+
clean_up_tokenization_spaces=False,
|
109 |
+
spaces_between_special_tokens=False,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
113 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
114 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
115 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
116 |
+
self.vocab_file = vocab_file
|
117 |
+
self.add_bos_token = add_bos_token
|
118 |
+
self.add_eos_token = add_eos_token
|
119 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
120 |
+
super().__init__(
|
121 |
+
bos_token=bos_token,
|
122 |
+
eos_token=eos_token,
|
123 |
+
unk_token=unk_token,
|
124 |
+
pad_token=pad_token,
|
125 |
+
add_bos_token=add_bos_token,
|
126 |
+
add_eos_token=add_eos_token,
|
127 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
128 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
129 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
|
133 |
+
@property
|
134 |
+
def unk_token_length(self):
|
135 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
136 |
+
|
137 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
138 |
+
def get_spm_processor(self, from_slow=False):
|
139 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
140 |
+
with open(self.vocab_file, "rb") as f:
|
141 |
+
sp_model = f.read()
|
142 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
143 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
144 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
145 |
+
normalizer_spec.add_dummy_prefix = True
|
146 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
147 |
+
sp_model = model.SerializeToString()
|
148 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
149 |
+
return tokenizer
|
150 |
+
|
151 |
+
def __getstate__(self):
|
152 |
+
state = self.__dict__.copy()
|
153 |
+
state["sp_model"] = None
|
154 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
155 |
+
return state
|
156 |
+
|
157 |
+
def __setstate__(self, d):
|
158 |
+
self.__dict__ = d
|
159 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
160 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def vocab_size(self):
|
164 |
+
"""Returns vocab size"""
|
165 |
+
return self.sp_model.get_piece_size()
|
166 |
+
|
167 |
+
def get_vocab(self):
|
168 |
+
"""Returns vocab as a dict"""
|
169 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
170 |
+
vocab.update(self.added_tokens_encoder)
|
171 |
+
return vocab
|
172 |
+
|
173 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
174 |
+
"""
|
175 |
+
Converts a string in a sequence of tokens, using the tokenizer.
|
176 |
+
|
177 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
|
178 |
+
(BPE/SentencePieces/WordPieces). Takes care of added tokens.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
text (`str`):
|
182 |
+
The sequence to be encoded.
|
183 |
+
**kwargs (additional keyword arguments):
|
184 |
+
Passed along to the model-specific `prepare_for_tokenization` preprocessing method.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
`List[str]`: The list of tokens.
|
188 |
+
"""
|
189 |
+
split_special_tokens = kwargs.pop("split_special_tokens", self.split_special_tokens)
|
190 |
+
remove_dummy_prefix = kwargs.pop("remove_dummy_prefix", False)
|
191 |
+
|
192 |
+
text, kwargs = self.prepare_for_tokenization(text, **kwargs)
|
193 |
+
|
194 |
+
if kwargs:
|
195 |
+
logger.warning(f"Keyword arguments {kwargs} not recognized.")
|
196 |
+
|
197 |
+
if hasattr(self, "do_lower_case") and self.do_lower_case:
|
198 |
+
# convert non-special tokens to lowercase. Might be super slow as well?
|
199 |
+
escaped_special_toks = [re.escape(s_tok) for s_tok in (self.all_special_tokens)]
|
200 |
+
escaped_special_toks += [
|
201 |
+
re.escape(s_tok.content)
|
202 |
+
for s_tok in (self._added_tokens_decoder.values())
|
203 |
+
if not s_tok.special and s_tok.normalized
|
204 |
+
]
|
205 |
+
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
|
206 |
+
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
|
207 |
+
|
208 |
+
if split_special_tokens:
|
209 |
+
no_split_token = []
|
210 |
+
tokens = [text]
|
211 |
+
else:
|
212 |
+
no_split_token = self._added_tokens_encoder.keys() # don't split on any of the added tokens
|
213 |
+
# "This is something<special_token_1> else"
|
214 |
+
tokens = self.tokens_trie.split(text)
|
215 |
+
|
216 |
+
# ["This is something", "<special_token_1>", " else"]
|
217 |
+
for i, token in enumerate(tokens):
|
218 |
+
if token in no_split_token:
|
219 |
+
tok_extended = self._added_tokens_decoder.get(self._added_tokens_encoder[token], None)
|
220 |
+
left = tokens[i - 1] if i > 0 else None
|
221 |
+
right = tokens[i + 1] if i < len(tokens) - 1 else None
|
222 |
+
if isinstance(tok_extended, AddedToken):
|
223 |
+
if tok_extended.rstrip and right:
|
224 |
+
# A bit counter-intuitive but we strip the left of the string
|
225 |
+
# since tok_extended.rstrip means the special token is eating all white spaces on its right
|
226 |
+
tokens[i + 1] = right.lstrip()
|
227 |
+
# Strip white spaces on the left
|
228 |
+
if tok_extended.lstrip and left:
|
229 |
+
tokens[i - 1] = left.rstrip() # Opposite here
|
230 |
+
if tok_extended.single_word and left and left[-1] != " ":
|
231 |
+
tokens[i - 1] += token
|
232 |
+
tokens[i] = ""
|
233 |
+
elif tok_extended.single_word and right and right[0] != " ":
|
234 |
+
tokens[i + 1] = token + tokens[i + 1]
|
235 |
+
tokens[i] = ""
|
236 |
+
else:
|
237 |
+
raise ValueError(
|
238 |
+
f"{tok_extended} cannot be tokenized because it was not properly added"
|
239 |
+
f" to the tokenizer. This means that it is not an `AddedToken` but a {type(tok_extended)}"
|
240 |
+
)
|
241 |
+
# ["This is something", "<special_token_1>", "else"]
|
242 |
+
tokenized_text = []
|
243 |
+
for token in tokens:
|
244 |
+
# Need to skip eventual empty (fully stripped) tokens
|
245 |
+
if not token:
|
246 |
+
continue
|
247 |
+
if token in no_split_token:
|
248 |
+
tokenized_text.append(token)
|
249 |
+
else:
|
250 |
+
tokenized_text.extend(self._tokenize(token, remove_dummy_prefix=remove_dummy_prefix))
|
251 |
+
# ["This", " is", " something", "<special_token_1>", "else"]
|
252 |
+
return tokenized_text
|
253 |
+
|
254 |
+
def _tokenize(self, text, **kwargs):
|
255 |
+
"""
|
256 |
+
Returns a tokenized string.
|
257 |
+
|
258 |
+
We add a option to remove dummpy prefix during tokenization instead of changing the default behaviour of the sentencepiece tokenizer.
|
259 |
+
This is useful when there're two tokenized sentences to be merged into one as the last one will have an extra dummy prefix which results in a
|
260 |
+
inconsistant pattern.
|
261 |
+
"""
|
262 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
263 |
+
if text.startswith((SPIECE_UNDERLINE, " ")):
|
264 |
+
return tokens
|
265 |
+
if len(tokens) > 0 and kwargs.get("remove_dummy_prefix") is True:
|
266 |
+
tokens[0] = tokens[0].replace(SPIECE_UNDERLINE, "", 1)
|
267 |
+
return tokens
|
268 |
+
|
269 |
+
def _convert_token_to_id(self, token):
|
270 |
+
"""Converts a token (str) in an id using the vocab."""
|
271 |
+
return self.sp_model.piece_to_id(token)
|
272 |
+
|
273 |
+
def _convert_id_to_token(self, index):
|
274 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
275 |
+
token = self.sp_model.IdToPiece(index)
|
276 |
+
return token
|
277 |
+
|
278 |
+
def convert_tokens_to_string(self, tokens):
|
279 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
280 |
+
current_sub_tokens = []
|
281 |
+
out_string = ""
|
282 |
+
# prev_is_special = False
|
283 |
+
for i, token in enumerate(tokens):
|
284 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
285 |
+
if token in self.all_special_tokens:
|
286 |
+
# if not prev_is_special and i != 0 and self.legacy:
|
287 |
+
# out_string += " "
|
288 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
289 |
+
# prev_is_special = True
|
290 |
+
current_sub_tokens = []
|
291 |
+
else:
|
292 |
+
current_sub_tokens.append(token)
|
293 |
+
# prev_is_special = False
|
294 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
295 |
+
return out_string
|
296 |
+
|
297 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
298 |
+
"""
|
299 |
+
Save the vocabulary and special tokens file to a directory.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
save_directory (`str`):
|
303 |
+
The directory in which to save the vocabulary.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
`Tuple(str)`: Paths to the files saved.
|
307 |
+
"""
|
308 |
+
if not os.path.isdir(save_directory):
|
309 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
310 |
+
return
|
311 |
+
out_vocab_file = os.path.join(
|
312 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
313 |
+
)
|
314 |
+
|
315 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
316 |
+
copyfile(self.vocab_file, out_vocab_file)
|
317 |
+
elif not os.path.isfile(self.vocab_file):
|
318 |
+
with open(out_vocab_file, "wb") as fi:
|
319 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
320 |
+
fi.write(content_spiece_model)
|
321 |
+
|
322 |
+
return (out_vocab_file,)
|
323 |
+
|
324 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
325 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
326 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
327 |
+
|
328 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
329 |
+
|
330 |
+
if token_ids_1 is not None:
|
331 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
332 |
+
|
333 |
+
return output
|
334 |
+
|
335 |
+
def get_special_tokens_mask(
|
336 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
337 |
+
) -> List[int]:
|
338 |
+
"""
|
339 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
340 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
token_ids_0 (`List[int]`):
|
344 |
+
List of IDs.
|
345 |
+
token_ids_1 (`List[int]`, *optional*):
|
346 |
+
Optional second list of IDs for sequence pairs.
|
347 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
348 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
352 |
+
"""
|
353 |
+
if already_has_special_tokens:
|
354 |
+
return super().get_special_tokens_mask(
|
355 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
356 |
+
)
|
357 |
+
|
358 |
+
bos_token_id = [1] if self.add_bos_token else []
|
359 |
+
eos_token_id = [1] if self.add_eos_token else []
|
360 |
+
|
361 |
+
if token_ids_1 is None:
|
362 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
363 |
+
return (
|
364 |
+
bos_token_id
|
365 |
+
+ ([0] * len(token_ids_0))
|
366 |
+
+ eos_token_id
|
367 |
+
+ bos_token_id
|
368 |
+
+ ([0] * len(token_ids_1))
|
369 |
+
+ eos_token_id
|
370 |
+
)
|
371 |
+
|
372 |
+
def create_token_type_ids_from_sequences(
|
373 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
374 |
+
) -> List[int]:
|
375 |
+
"""
|
376 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
377 |
+
sequence pair mask has the following format:
|
378 |
+
|
379 |
+
```
|
380 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
381 |
+
| first sequence | second sequence |
|
382 |
+
```
|
383 |
+
|
384 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
385 |
+
|
386 |
+
Args:
|
387 |
+
token_ids_0 (`List[int]`):
|
388 |
+
List of ids.
|
389 |
+
token_ids_1 (`List[int]`, *optional*):
|
390 |
+
Optional second list of IDs for sequence pairs.
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
394 |
+
"""
|
395 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
396 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
397 |
+
|
398 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
399 |
+
|
400 |
+
if token_ids_1 is not None:
|
401 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
402 |
+
|
403 |
+
return output
|