Text Generation
Transformers
PyTorch
TeleFLM
custom_code
jasonfang3900 commited on
Commit
2f62c43
·
verified ·
1 Parent(s): 0f32324

Upload modeling_teleflm.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_teleflm.py +1524 -0
modeling_teleflm.py ADDED
@@ -0,0 +1,1524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """ PyTorch Tele-FLM model, based on LLAMA implementation. """
3
+
4
+ import math
5
+ import warnings
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
16
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ QuestionAnsweringModelOutput,
21
+ SequenceClassifierOutputWithPast,
22
+ )
23
+ from transformers.modeling_utils import PreTrainedModel
24
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
25
+ from transformers.utils import (
26
+ add_start_docstrings,
27
+ add_start_docstrings_to_model_forward,
28
+ is_flash_attn_2_available,
29
+ is_flash_attn_greater_or_equal_2_10,
30
+ logging,
31
+ replace_return_docstrings,
32
+ )
33
+ from .configuration_teleflm import TeleFLMConfig
34
+
35
+ if is_flash_attn_2_available():
36
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
37
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CONFIG_FOR_DOC = "TeleFLMConfig"
43
+
44
+
45
+ def _get_unpad_data(attention_mask):
46
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
47
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
48
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
49
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
50
+ return (
51
+ indices,
52
+ cu_seqlens,
53
+ max_seqlen_in_batch,
54
+ )
55
+
56
+
57
+ class TeleFLMRMSNorm(nn.Module):
58
+ def __init__(self, hidden_size, eps=1e-6):
59
+ """
60
+ TeleFLMRMSNorm is equivalent to T5LayerNorm
61
+ """
62
+ super().__init__()
63
+ self.weight = nn.Parameter(torch.ones(hidden_size))
64
+ self.variance_epsilon = eps
65
+
66
+ def forward(self, hidden_states):
67
+ input_dtype = hidden_states.dtype
68
+ hidden_states = hidden_states.to(torch.float32)
69
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
71
+ return self.weight * hidden_states.to(input_dtype)
72
+
73
+
74
+ ALL_LAYERNORM_LAYERS.append(TeleFLMRMSNorm)
75
+
76
+
77
+ class TeleFLMRotaryEmbedding(nn.Module):
78
+ def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
79
+ super().__init__()
80
+ self.scaling_factor = scaling_factor
81
+ self.dim = dim
82
+ self.max_position_embeddings = max_position_embeddings
83
+ self.base = base
84
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
85
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
86
+ # For BC we register cos and sin cached
87
+ self.max_seq_len_cached = max_position_embeddings
88
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
89
+ t = t / self.scaling_factor
90
+ freqs = torch.outer(t, self.inv_freq)
91
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
92
+ emb = torch.cat((freqs, freqs), dim=-1)
93
+ self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
94
+ self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
95
+
96
+
97
+ @torch.no_grad()
98
+ def forward(self, x, position_ids):
99
+ # x: [bs, num_attention_heads, seq_len, head_size]
100
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
101
+ position_ids_expanded = position_ids[:, None, :].float()
102
+ # Force float32 since bfloat16 loses precision on long contexts
103
+ # See https://github.com/huggingface/transformers/pull/29285
104
+ device_type = x.device.type
105
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
106
+ with torch.autocast(device_type=device_type, enabled=False):
107
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
108
+ emb = torch.cat((freqs, freqs), dim=-1)
109
+ cos = emb.cos()
110
+ sin = emb.sin()
111
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
112
+
113
+
114
+ class TeleFLMLinearScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
115
+ """TeleFLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
116
+
117
+ def forward(self, x, position_ids):
118
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
119
+ position_ids = position_ids.float() / self.scaling_factor
120
+ cos, sin = super().forward(x, position_ids)
121
+ return cos, sin
122
+
123
+
124
+ class TeleFLMDynamicNTKScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
125
+ """TeleFLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
126
+
127
+ def forward(self, x, position_ids):
128
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
129
+ seq_len = torch.max(position_ids) + 1
130
+ if seq_len > self.max_position_embeddings:
131
+ base = self.base * (
132
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
133
+ ) ** (self.dim / (self.dim - 2))
134
+ inv_freq = 1.0 / (
135
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
136
+ )
137
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
138
+
139
+ cos, sin = super().forward(x, position_ids)
140
+ return cos, sin
141
+
142
+
143
+ def rotate_half(x):
144
+ """Rotates half the hidden dims of the input."""
145
+ x1 = x[..., : x.shape[-1] // 2]
146
+ x2 = x[..., x.shape[-1] // 2 :]
147
+ return torch.cat((-x2, x1), dim=-1)
148
+
149
+
150
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
151
+ """Applies Rotary Position Embedding to the query and key tensors.
152
+
153
+ Args:
154
+ q (`torch.Tensor`): The query tensor.
155
+ k (`torch.Tensor`): The key tensor.
156
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
157
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
158
+ position_ids (`torch.Tensor`, *optional*):
159
+ Deprecated and unused.
160
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
161
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
162
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
163
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
164
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
165
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
166
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
167
+ Returns:
168
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
169
+ """
170
+ cos = cos.unsqueeze(unsqueeze_dim)
171
+ sin = sin.unsqueeze(unsqueeze_dim)
172
+ q_embed = (q * cos) + (rotate_half(q) * sin)
173
+ k_embed = (k * cos) + (rotate_half(k) * sin)
174
+ return q_embed, k_embed
175
+
176
+
177
+ class TeleFLMMLP(nn.Module):
178
+ def __init__(self, config):
179
+ super().__init__()
180
+ self.config = config
181
+ self.hidden_size = config.hidden_size
182
+ self.intermediate_size = config.intermediate_size
183
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
184
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
185
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
186
+ self.act_fn = ACT2FN[config.hidden_act]
187
+
188
+ def forward(self, x):
189
+ if self.config.pretraining_tp > 1:
190
+ slice = self.intermediate_size // self.config.pretraining_tp
191
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
192
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
193
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
194
+
195
+ gate_proj = torch.cat(
196
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
197
+ )
198
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
199
+
200
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
201
+ down_proj = [
202
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
203
+ ]
204
+ down_proj = sum(down_proj)
205
+ else:
206
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
207
+
208
+ return down_proj
209
+
210
+
211
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
212
+ """
213
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
214
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
215
+ """
216
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
217
+ if n_rep == 1:
218
+ return hidden_states
219
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
220
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
221
+
222
+
223
+ class TeleFLMAttention(nn.Module):
224
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
225
+
226
+ def __init__(self, config: TeleFLMConfig, layer_idx: Optional[int] = None):
227
+ super().__init__()
228
+ self.config = config
229
+ self.layer_idx = layer_idx
230
+ if layer_idx is None:
231
+ logger.warning_once(
232
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
233
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
234
+ "when creating this class."
235
+ )
236
+
237
+ self.attention_dropout = config.attention_dropout
238
+ self.hidden_size = config.hidden_size
239
+ self.num_heads = config.num_attention_heads
240
+ self.head_dim = self.hidden_size // self.num_heads
241
+ self.num_key_value_heads = config.num_key_value_heads
242
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
243
+ self.max_position_embeddings = config.max_position_embeddings
244
+ self.rope_theta = config.rope_theta
245
+ self.is_causal = True
246
+
247
+ if (self.head_dim * self.num_heads) != self.hidden_size:
248
+ raise ValueError(
249
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
250
+ f" and `num_heads`: {self.num_heads})."
251
+ )
252
+
253
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
254
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
255
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
256
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
257
+ self._init_rope()
258
+
259
+ def _init_rope(self):
260
+ if self.config.rope_scaling is None:
261
+ self.rotary_emb = TeleFLMRotaryEmbedding(
262
+ self.head_dim,
263
+ max_position_embeddings=self.max_position_embeddings,
264
+ base=self.rope_theta,
265
+ )
266
+ else:
267
+ scaling_type = self.config.rope_scaling["type"]
268
+ scaling_factor = self.config.rope_scaling["factor"]
269
+ if scaling_type == "linear":
270
+ self.rotary_emb = TeleFLMLinearScalingRotaryEmbedding(
271
+ self.head_dim,
272
+ max_position_embeddings=self.max_position_embeddings,
273
+ scaling_factor=scaling_factor,
274
+ base=self.rope_theta,
275
+ )
276
+ elif scaling_type == "dynamic":
277
+ self.rotary_emb = TeleFLMDynamicNTKScalingRotaryEmbedding(
278
+ self.head_dim,
279
+ max_position_embeddings=self.max_position_embeddings,
280
+ scaling_factor=scaling_factor,
281
+ base=self.rope_theta,
282
+ )
283
+ else:
284
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
285
+
286
+ def forward(
287
+ self,
288
+ hidden_states: torch.Tensor,
289
+ attention_mask: Optional[torch.Tensor] = None,
290
+ position_ids: Optional[torch.LongTensor] = None,
291
+ past_key_value: Optional[Cache] = None,
292
+ output_attentions: bool = False,
293
+ use_cache: bool = False,
294
+ cache_position: Optional[torch.LongTensor] = None,
295
+ **kwargs,
296
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
297
+ bsz, q_len, _ = hidden_states.size()
298
+
299
+ if self.config.pretraining_tp > 1:
300
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
301
+ query_slices = self.q_proj.weight.split(
302
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
303
+ )
304
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
305
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
306
+
307
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
308
+ query_states = torch.cat(query_states, dim=-1)
309
+
310
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
311
+ key_states = torch.cat(key_states, dim=-1)
312
+
313
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
314
+ value_states = torch.cat(value_states, dim=-1)
315
+
316
+ else:
317
+ query_states = self.q_proj(hidden_states)
318
+ key_states = self.k_proj(hidden_states)
319
+ value_states = self.v_proj(hidden_states)
320
+
321
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
322
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
324
+
325
+ past_key_value = getattr(self, "past_key_value", past_key_value)
326
+ cos, sin = self.rotary_emb(value_states, position_ids)
327
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
328
+
329
+ if past_key_value is not None:
330
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
331
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
332
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
333
+
334
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
335
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
336
+
337
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
338
+
339
+ if attention_mask is not None: # no matter the length, we just slice it
340
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
341
+ attn_weights = attn_weights + causal_mask
342
+
343
+ # upcast attention to fp32
344
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
345
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
346
+ attn_output = torch.matmul(attn_weights, value_states)
347
+
348
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
349
+ raise ValueError(
350
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
351
+ f" {attn_output.size()}"
352
+ )
353
+
354
+ attn_output = attn_output.transpose(1, 2).contiguous()
355
+
356
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
357
+
358
+ if self.config.pretraining_tp > 1:
359
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
360
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
361
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
362
+ else:
363
+ attn_output = self.o_proj(attn_output)
364
+
365
+ if not output_attentions:
366
+ attn_weights = None
367
+
368
+ return attn_output, attn_weights, past_key_value
369
+
370
+
371
+ class TeleFLMFlashAttention2(TeleFLMAttention):
372
+ """
373
+ Tele-FLM flash attention module. This module inherits from `TeleFLMAttention` as the weights of the module stays
374
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
375
+ flash attention and deal with padding tokens in case the input contains any of them.
376
+ """
377
+
378
+ def __init__(self, *args, **kwargs):
379
+ super().__init__(*args, **kwargs)
380
+
381
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
382
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
383
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
384
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
385
+
386
+ def forward(
387
+ self,
388
+ hidden_states: torch.Tensor,
389
+ attention_mask: Optional[torch.LongTensor] = None,
390
+ position_ids: Optional[torch.LongTensor] = None,
391
+ past_key_value: Optional[Cache] = None,
392
+ output_attentions: bool = False,
393
+ use_cache: bool = False,
394
+ cache_position: Optional[torch.LongTensor] = None,
395
+ **kwargs,
396
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
397
+ output_attentions = False
398
+
399
+ bsz, q_len, _ = hidden_states.size()
400
+
401
+ query_states = self.q_proj(hidden_states)
402
+ key_states = self.k_proj(hidden_states)
403
+ value_states = self.v_proj(hidden_states)
404
+
405
+ # Flash attention requires the input to have the shape
406
+ # batch_size x seq_length x head_dim x hidden_dim
407
+ # therefore we just need to keep the original shape
408
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
409
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
410
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
411
+
412
+ cos, sin = self.rotary_emb(value_states, position_ids)
413
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
414
+
415
+ past_key_value = getattr(self, "past_key_value", past_key_value)
416
+
417
+ if past_key_value is not None:
418
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
419
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
420
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
421
+
422
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
423
+ # to be able to avoid many of these transpose/reshape/view.
424
+ query_states = query_states.transpose(1, 2)
425
+ key_states = key_states.transpose(1, 2)
426
+ value_states = value_states.transpose(1, 2)
427
+
428
+ dropout_rate = self.attention_dropout if self.training else 0.0
429
+
430
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
431
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
432
+ # cast them back in the correct dtype just to be sure everything works as expected.
433
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
434
+ # in fp32. (TeleFLMRMSNorm handles it correctly)
435
+
436
+ input_dtype = query_states.dtype
437
+ if input_dtype == torch.float32:
438
+ if torch.is_autocast_enabled():
439
+ target_dtype = torch.get_autocast_gpu_dtype()
440
+ # Handle the case where the model is quantized
441
+ elif hasattr(self.config, "_pre_quantization_dtype"):
442
+ target_dtype = self.config._pre_quantization_dtype
443
+ else:
444
+ target_dtype = self.q_proj.weight.dtype
445
+
446
+ logger.warning_once(
447
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
448
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
449
+ f" {target_dtype}."
450
+ )
451
+
452
+ query_states = query_states.to(target_dtype)
453
+ key_states = key_states.to(target_dtype)
454
+ value_states = value_states.to(target_dtype)
455
+
456
+ attn_output = self._flash_attention_forward(
457
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
458
+ )
459
+
460
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
461
+ attn_output = self.o_proj(attn_output)
462
+
463
+ if not output_attentions:
464
+ attn_weights = None
465
+
466
+ return attn_output, attn_weights, past_key_value
467
+
468
+ def _flash_attention_forward(
469
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
470
+ ):
471
+ """
472
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
473
+ first unpad the input, then computes the attention scores and pad the final attention scores.
474
+
475
+ Args:
476
+ query_states (`torch.Tensor`):
477
+ Input query states to be passed to Flash Attention API
478
+ key_states (`torch.Tensor`):
479
+ Input key states to be passed to Flash Attention API
480
+ value_states (`torch.Tensor`):
481
+ Input value states to be passed to Flash Attention API
482
+ attention_mask (`torch.Tensor`):
483
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
484
+ position of padding tokens and 1 for the position of non-padding tokens.
485
+ dropout (`float`):
486
+ Attention dropout
487
+ softmax_scale (`float`, *optional*):
488
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
489
+ """
490
+ if not self._flash_attn_uses_top_left_mask:
491
+ causal = self.is_causal
492
+ else:
493
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in TeleFLMFlashAttention2 __init__.
494
+ causal = self.is_causal and query_length != 1
495
+
496
+ # Contains at least one padding token in the sequence
497
+ if attention_mask is not None:
498
+ batch_size = query_states.shape[0]
499
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
500
+ query_states, key_states, value_states, attention_mask, query_length
501
+ )
502
+
503
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
504
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
505
+
506
+ attn_output_unpad = flash_attn_varlen_func(
507
+ query_states,
508
+ key_states,
509
+ value_states,
510
+ cu_seqlens_q=cu_seqlens_q,
511
+ cu_seqlens_k=cu_seqlens_k,
512
+ max_seqlen_q=max_seqlen_in_batch_q,
513
+ max_seqlen_k=max_seqlen_in_batch_k,
514
+ dropout_p=dropout,
515
+ softmax_scale=softmax_scale,
516
+ causal=causal,
517
+ )
518
+
519
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
520
+ else:
521
+ attn_output = flash_attn_func(
522
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
523
+ )
524
+
525
+ return attn_output
526
+
527
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
528
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
529
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
530
+
531
+ key_layer = index_first_axis(
532
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
533
+ )
534
+ value_layer = index_first_axis(
535
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
536
+ )
537
+ if query_length == kv_seq_len:
538
+ query_layer = index_first_axis(
539
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
540
+ )
541
+ cu_seqlens_q = cu_seqlens_k
542
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
543
+ indices_q = indices_k
544
+ elif query_length == 1:
545
+ max_seqlen_in_batch_q = 1
546
+ cu_seqlens_q = torch.arange(
547
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
548
+ ) # There is a memcpy here, that is very bad.
549
+ indices_q = cu_seqlens_q[:-1]
550
+ query_layer = query_layer.squeeze(1)
551
+ else:
552
+ # The -q_len: slice assumes left padding.
553
+ attention_mask = attention_mask[:, -query_length:]
554
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
555
+
556
+ return (
557
+ query_layer,
558
+ key_layer,
559
+ value_layer,
560
+ indices_q,
561
+ (cu_seqlens_q, cu_seqlens_k),
562
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
563
+ )
564
+
565
+
566
+ class TeleFLMSdpaAttention(TeleFLMAttention):
567
+ """
568
+ Tele-FLM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
569
+ `TeleFLMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
570
+ SDPA API.
571
+ """
572
+
573
+ # Adapted from TeleFLMAttention.forward
574
+ def forward(
575
+ self,
576
+ hidden_states: torch.Tensor,
577
+ attention_mask: Optional[torch.Tensor] = None,
578
+ position_ids: Optional[torch.LongTensor] = None,
579
+ past_key_value: Optional[Cache] = None,
580
+ output_attentions: bool = False,
581
+ use_cache: bool = False,
582
+ cache_position: Optional[torch.LongTensor] = None,
583
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
584
+ if output_attentions:
585
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
586
+ logger.warning_once(
587
+ "TeleFLMModel is using TeleFLMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
588
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
589
+ )
590
+ return super().forward(
591
+ hidden_states=hidden_states,
592
+ attention_mask=attention_mask,
593
+ position_ids=position_ids,
594
+ past_key_value=past_key_value,
595
+ output_attentions=output_attentions,
596
+ use_cache=use_cache,
597
+ cache_position=cache_position,
598
+ )
599
+
600
+ bsz, q_len, _ = hidden_states.size()
601
+
602
+ query_states = self.q_proj(hidden_states)
603
+ key_states = self.k_proj(hidden_states)
604
+ value_states = self.v_proj(hidden_states)
605
+
606
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
607
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
608
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
609
+
610
+ cos, sin = self.rotary_emb(value_states, position_ids)
611
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
612
+
613
+ # In case static cache is used, it is an instance attribute.
614
+ past_key_value = getattr(self, "past_key_value", past_key_value)
615
+
616
+ if past_key_value is not None:
617
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
618
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
619
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
620
+
621
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
622
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
623
+
624
+ causal_mask = attention_mask
625
+ # if attention_mask is not None and cache_position is not None:
626
+ if attention_mask is not None:
627
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
628
+
629
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
630
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
631
+ if query_states.device.type == "cuda" and causal_mask is not None:
632
+ query_states = query_states.contiguous()
633
+ key_states = key_states.contiguous()
634
+ value_states = value_states.contiguous()
635
+
636
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
637
+ query_states,
638
+ key_states,
639
+ value_states,
640
+ attn_mask=causal_mask,
641
+ dropout_p=self.attention_dropout if self.training else 0.0,
642
+ )
643
+
644
+ attn_output = attn_output.transpose(1, 2).contiguous()
645
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
646
+
647
+ attn_output = self.o_proj(attn_output)
648
+
649
+ return attn_output, None, past_key_value
650
+
651
+
652
+ TELEFLM_ATTENTION_CLASSES = {
653
+ "eager": TeleFLMAttention,
654
+ "flash_attention_2": TeleFLMFlashAttention2,
655
+ "sdpa": TeleFLMSdpaAttention,
656
+ }
657
+
658
+
659
+ class TeleFLMDecoderLayer(nn.Module):
660
+ def __init__(self, config: TeleFLMConfig, layer_idx: int):
661
+ super().__init__()
662
+ self.hidden_size = config.hidden_size
663
+ self.self_attn = TELEFLM_ATTENTION_CLASSES.get(config._attn_implementation, TeleFLMAttention)(config=config, layer_idx=layer_idx)
664
+ self.mlp = TeleFLMMLP(config)
665
+ self.input_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
666
+ self.post_attention_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
667
+
668
+ def forward(
669
+ self,
670
+ hidden_states: torch.Tensor,
671
+ attention_mask: Optional[torch.Tensor] = None,
672
+ position_ids: Optional[torch.LongTensor] = None,
673
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
674
+ output_attentions: Optional[bool] = False,
675
+ use_cache: Optional[bool] = False,
676
+ cache_position: Optional[torch.LongTensor] = None,
677
+ **kwargs,
678
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
679
+ """
680
+ Args:
681
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
682
+ attention_mask (`torch.FloatTensor`, *optional*):
683
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
684
+ query_sequence_length, key_sequence_length)` if default attention is used.
685
+ output_attentions (`bool`, *optional*):
686
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
687
+ returned tensors for more detail.
688
+ use_cache (`bool`, *optional*):
689
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
690
+ (see `past_key_values`).
691
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
692
+ """
693
+ if "padding_mask" in kwargs:
694
+ warnings.warn(
695
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
696
+ )
697
+
698
+ residual = hidden_states
699
+
700
+ hidden_states = self.input_layernorm(hidden_states)
701
+
702
+ # Self Attention
703
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
704
+ hidden_states=hidden_states,
705
+ attention_mask=attention_mask,
706
+ position_ids=position_ids,
707
+ past_key_value=past_key_value,
708
+ output_attentions=output_attentions,
709
+ use_cache=use_cache,
710
+ cache_position=cache_position,
711
+ **kwargs,
712
+ )
713
+ hidden_states = residual + hidden_states
714
+
715
+ # Fully Connected
716
+ residual = hidden_states
717
+ hidden_states = self.post_attention_layernorm(hidden_states)
718
+ hidden_states = self.mlp(hidden_states)
719
+ hidden_states = residual + hidden_states
720
+
721
+ outputs = (hidden_states,)
722
+
723
+ if output_attentions:
724
+ outputs += (self_attn_weights,)
725
+
726
+ if use_cache:
727
+ outputs += (present_key_value,)
728
+
729
+ return outputs
730
+
731
+
732
+ TELEFLM_START_DOCSTRING = r"""
733
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
734
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
735
+ etc.)
736
+
737
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
738
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
739
+ and behavior.
740
+
741
+ Parameters:
742
+ config ([`TeleFLMConfig`]):
743
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
744
+ load the weights associated with the model, only the configuration. Check out the
745
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
746
+ """
747
+
748
+
749
+ @add_start_docstrings(
750
+ "The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
751
+ TELEFLM_START_DOCSTRING,
752
+ )
753
+ class TeleFLMPreTrainedModel(PreTrainedModel):
754
+ config_class = TeleFLMConfig
755
+ base_model_prefix = "model"
756
+ supports_gradient_checkpointing = True
757
+ _no_split_modules = ["TeleFLMDecoderLayer"]
758
+ _skip_keys_device_placement = ["past_key_values"]
759
+ _supports_flash_attn_2 = True
760
+ _supports_sdpa = True
761
+ _supports_cache_class = True
762
+
763
+ def _init_weights(self, module):
764
+ std = self.config.initializer_range
765
+ if isinstance(module, nn.Linear):
766
+ module.weight.data.normal_(mean=0.0, std=std)
767
+ if module.bias is not None:
768
+ module.bias.data.zero_()
769
+ elif isinstance(module, nn.Embedding):
770
+ module.weight.data.normal_(mean=0.0, std=std)
771
+ if module.padding_idx is not None:
772
+ module.weight.data[module.padding_idx].zero_()
773
+
774
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
775
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
776
+ raise ValueError(
777
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
778
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
779
+ )
780
+
781
+ for layer in self.model.layers:
782
+ device = layer.input_layernorm.weight.device
783
+ if hasattr(self.config, "_pre_quantization_dtype"):
784
+ dtype = self.config._pre_quantization_dtype
785
+ else:
786
+ dtype = layer.self_attn.o_proj.weight.dtype
787
+ layer.self_attn.past_key_value = cache_cls(
788
+ self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
789
+ )
790
+
791
+ def _reset_cache(self):
792
+ for layer in self.model.layers:
793
+ layer.self_attn.past_key_value = None
794
+
795
+
796
+ TELEFLM_INPUTS_DOCSTRING = r"""
797
+ Args:
798
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
799
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
800
+ it.
801
+
802
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
803
+ [`PreTrainedTokenizer.__call__`] for details.
804
+
805
+ [What are input IDs?](../glossary#input-ids)
806
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
807
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
808
+
809
+ - 1 for tokens that are **not masked**,
810
+ - 0 for tokens that are **masked**.
811
+
812
+ [What are attention masks?](../glossary#attention-mask)
813
+
814
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
815
+ [`PreTrainedTokenizer.__call__`] for details.
816
+
817
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
818
+ `past_key_values`).
819
+
820
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
821
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
822
+ information on the default strategy.
823
+
824
+ - 1 indicates the head is **not masked**,
825
+ - 0 indicates the head is **masked**.
826
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
827
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
828
+ config.n_positions - 1]`.
829
+
830
+ [What are position IDs?](../glossary#position-ids)
831
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
832
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
833
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
834
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
835
+
836
+ Two formats are allowed:
837
+ - a [`~cache_utils.Cache`] instance;
838
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
839
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
840
+ cache format.
841
+
842
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
843
+ legacy cache format will be returned.
844
+
845
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
846
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
847
+ of shape `(batch_size, sequence_length)`.
848
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
849
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
850
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
851
+ model's internal embedding lookup matrix.
852
+ use_cache (`bool`, *optional*):
853
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
854
+ `past_key_values`).
855
+ output_attentions (`bool`, *optional*):
856
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
857
+ tensors for more detail.
858
+ output_hidden_states (`bool`, *optional*):
859
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
860
+ more detail.
861
+ return_dict (`bool`, *optional*):
862
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
863
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
864
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
865
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
866
+ the complete sequence length.
867
+ """
868
+
869
+
870
+ @add_start_docstrings(
871
+ "The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
872
+ TELEFLM_START_DOCSTRING,
873
+ )
874
+ class TeleFLMModel(TeleFLMPreTrainedModel):
875
+ """
876
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TeleFLMDecoderLayer`]
877
+
878
+ Args:
879
+ config: TeleFLMConfig
880
+ """
881
+
882
+ def __init__(self, config: TeleFLMConfig):
883
+ super().__init__(config)
884
+ self.padding_idx = config.pad_token_id
885
+ self.vocab_size = config.vocab_size
886
+ # Mup
887
+ self.use_mup = config.use_mup
888
+ if self.use_mup:
889
+ self.input_mult = config.input_mult
890
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
891
+ self.layers = nn.ModuleList(
892
+ [TeleFLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
893
+ )
894
+ self.norm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
895
+ self.gradient_checkpointing = False
896
+
897
+ # Initialize weights and apply final processing
898
+ self.post_init()
899
+
900
+ def get_input_embeddings(self):
901
+ return self.embed_tokens
902
+
903
+ def set_input_embeddings(self, value):
904
+ self.embed_tokens = value
905
+
906
+ @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
907
+ def forward(
908
+ self,
909
+ input_ids: torch.LongTensor = None,
910
+ attention_mask: Optional[torch.Tensor] = None,
911
+ position_ids: Optional[torch.LongTensor] = None,
912
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
913
+ inputs_embeds: Optional[torch.FloatTensor] = None,
914
+ use_cache: Optional[bool] = None,
915
+ output_attentions: Optional[bool] = None,
916
+ output_hidden_states: Optional[bool] = None,
917
+ return_dict: Optional[bool] = None,
918
+ cache_position: Optional[torch.LongTensor] = None,
919
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
920
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
921
+ output_hidden_states = (
922
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
923
+ )
924
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
925
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
926
+
927
+ if (input_ids is None) ^ (inputs_embeds is not None):
928
+ raise ValueError(
929
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
930
+ )
931
+
932
+ if self.gradient_checkpointing and self.training and use_cache:
933
+ logger.warning_once(
934
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
935
+ )
936
+ use_cache = False
937
+
938
+ if inputs_embeds is None:
939
+ inputs_embeds = self.embed_tokens(input_ids)
940
+
941
+ # Mup
942
+ if self.use_mup:
943
+ inputs_embeds = inputs_embeds * self.input_mult
944
+
945
+ past_seen_tokens = 0
946
+ if use_cache: # kept for BC (cache positions)
947
+ if not isinstance(past_key_values, StaticCache):
948
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
949
+ past_seen_tokens = past_key_values.get_seq_length()
950
+
951
+ if cache_position is None:
952
+ if isinstance(past_key_values, StaticCache):
953
+ raise ValueError("cache_position is a required argument when using StaticCache.")
954
+ cache_position = torch.arange(
955
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
956
+ )
957
+
958
+ if position_ids is None:
959
+ position_ids = cache_position.unsqueeze(0)
960
+
961
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
962
+
963
+ # embed positions
964
+ hidden_states = inputs_embeds
965
+
966
+ # decoder layers
967
+ all_hidden_states = () if output_hidden_states else None
968
+ all_self_attns = () if output_attentions else None
969
+ next_decoder_cache = None
970
+
971
+ for decoder_layer in self.layers:
972
+ if output_hidden_states:
973
+ all_hidden_states += (hidden_states,)
974
+
975
+ if self.gradient_checkpointing and self.training:
976
+ layer_outputs = self._gradient_checkpointing_func(
977
+ decoder_layer.__call__,
978
+ hidden_states,
979
+ causal_mask,
980
+ position_ids,
981
+ past_key_values,
982
+ output_attentions,
983
+ use_cache,
984
+ cache_position,
985
+ )
986
+ else:
987
+ layer_outputs = decoder_layer(
988
+ hidden_states,
989
+ attention_mask=causal_mask,
990
+ position_ids=position_ids,
991
+ past_key_value=past_key_values,
992
+ output_attentions=output_attentions,
993
+ use_cache=use_cache,
994
+ cache_position=cache_position,
995
+ )
996
+
997
+ hidden_states = layer_outputs[0]
998
+
999
+ if use_cache:
1000
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1001
+
1002
+ if output_attentions:
1003
+ all_self_attns += (layer_outputs[1],)
1004
+
1005
+ hidden_states = self.norm(hidden_states)
1006
+
1007
+ # add hidden states from the last decoder layer
1008
+ if output_hidden_states:
1009
+ all_hidden_states += (hidden_states,)
1010
+
1011
+ next_cache = None
1012
+ if use_cache:
1013
+ next_cache = (
1014
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
1015
+ )
1016
+ if not return_dict:
1017
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1018
+ return BaseModelOutputWithPast(
1019
+ last_hidden_state=hidden_states,
1020
+ past_key_values=next_cache,
1021
+ hidden_states=all_hidden_states,
1022
+ attentions=all_self_attns,
1023
+ )
1024
+
1025
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1026
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1027
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1028
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1029
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
1030
+ if self.config._attn_implementation == "flash_attention_2":
1031
+ if attention_mask is not None and 0.0 in attention_mask:
1032
+ return attention_mask
1033
+ return None
1034
+
1035
+ dtype, device = input_tensor.dtype, input_tensor.device
1036
+ min_dtype = torch.finfo(dtype).min
1037
+ sequence_length = input_tensor.shape[1]
1038
+ if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
1039
+ target_length = self.config.max_position_embeddings
1040
+ else: # dynamic cache
1041
+ target_length = (
1042
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
1043
+ )
1044
+
1045
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1046
+ if sequence_length != 1:
1047
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1048
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1049
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1050
+ if attention_mask is not None:
1051
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1052
+ if attention_mask.dim() == 2:
1053
+ mask_length = attention_mask.shape[-1]
1054
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
1055
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1056
+ elif attention_mask.dim() == 4:
1057
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
1058
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
1059
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
1060
+ offset = cache_position[0]
1061
+ else:
1062
+ offset = 0
1063
+ mask_shape = attention_mask.shape
1064
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
1065
+ causal_mask[
1066
+ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
1067
+ ] = mask_slice
1068
+
1069
+ if (
1070
+ self.config._attn_implementation == "sdpa"
1071
+ and attention_mask is not None
1072
+ and attention_mask.device.type == "cuda"
1073
+ ):
1074
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1075
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1076
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1077
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1078
+
1079
+ return causal_mask
1080
+
1081
+
1082
+ class TeleFLMForCausalLM(TeleFLMPreTrainedModel):
1083
+ _tied_weights_keys = ["lm_head.weight"]
1084
+
1085
+ def __init__(self, config):
1086
+ super().__init__(config)
1087
+ self.model = TeleFLMModel(config)
1088
+ self.vocab_size = config.vocab_size
1089
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1090
+ self.use_mup = config.use_mup
1091
+ if self.use_mup:
1092
+ self.mup_scale_factor = config.mup_scale_factor
1093
+ self.output_mult = config.output_mult / self.mup_scale_factor
1094
+ # Initialize weights and apply final processing
1095
+ self.post_init()
1096
+
1097
+ def get_input_embeddings(self):
1098
+ return self.model.embed_tokens
1099
+
1100
+ def set_input_embeddings(self, value):
1101
+ self.model.embed_tokens = value
1102
+
1103
+ def get_output_embeddings(self):
1104
+ return self.lm_head
1105
+
1106
+ def set_output_embeddings(self, new_embeddings):
1107
+ self.lm_head = new_embeddings
1108
+
1109
+ def set_decoder(self, decoder):
1110
+ self.model = decoder
1111
+
1112
+ def get_decoder(self):
1113
+ return self.model
1114
+
1115
+ @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
1116
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1117
+ def forward(
1118
+ self,
1119
+ input_ids: torch.LongTensor = None,
1120
+ attention_mask: Optional[torch.Tensor] = None,
1121
+ position_ids: Optional[torch.LongTensor] = None,
1122
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1123
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1124
+ labels: Optional[torch.LongTensor] = None,
1125
+ use_cache: Optional[bool] = None,
1126
+ output_attentions: Optional[bool] = None,
1127
+ output_hidden_states: Optional[bool] = None,
1128
+ return_dict: Optional[bool] = None,
1129
+ cache_position: Optional[torch.LongTensor] = None,
1130
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1131
+ r"""
1132
+ Args:
1133
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1134
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1135
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1136
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1137
+
1138
+ Returns:
1139
+
1140
+ Example:
1141
+
1142
+ ```python
1143
+ >>> from transformers import AutoTokenizer, TeleFLMForCausalLM
1144
+
1145
+ >>> model = TeleFLMForCausalLM.from_pretrained("CofeAI/Tele-FLM")
1146
+ >>> tokenizer = AutoTokenizer.from_pretrained("CofeAI/Tele-FLM")
1147
+
1148
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1149
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1150
+
1151
+ >>> # Generate
1152
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1153
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1154
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1155
+ ```"""
1156
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1157
+ output_hidden_states = (
1158
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1159
+ )
1160
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1161
+
1162
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1163
+ outputs = self.model(
1164
+ input_ids=input_ids,
1165
+ attention_mask=attention_mask,
1166
+ position_ids=position_ids,
1167
+ past_key_values=past_key_values,
1168
+ inputs_embeds=inputs_embeds,
1169
+ use_cache=use_cache,
1170
+ output_attentions=output_attentions,
1171
+ output_hidden_states=output_hidden_states,
1172
+ return_dict=return_dict,
1173
+ cache_position=cache_position,
1174
+ )
1175
+
1176
+ hidden_states = outputs[0]
1177
+ if self.config.pretraining_tp > 1:
1178
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1179
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1180
+ logits = torch.cat(logits, dim=-1)
1181
+ else:
1182
+ logits = self.lm_head(hidden_states)
1183
+ logits = logits.float()
1184
+ # Mup
1185
+ if self.use_mup:
1186
+ logits = logits * self.output_mult
1187
+
1188
+ loss = None
1189
+ if labels is not None:
1190
+ # Shift so that tokens < n predict n
1191
+ shift_logits = logits[..., :-1, :].contiguous()
1192
+ shift_labels = labels[..., 1:].contiguous()
1193
+ # Flatten the tokens
1194
+ loss_fct = CrossEntropyLoss()
1195
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1196
+ shift_labels = shift_labels.view(-1)
1197
+ # Enable model parallelism
1198
+ shift_labels = shift_labels.to(shift_logits.device)
1199
+ loss = loss_fct(shift_logits, shift_labels)
1200
+
1201
+ if not return_dict:
1202
+ output = (logits,) + outputs[1:]
1203
+ return (loss,) + output if loss is not None else output
1204
+
1205
+ return CausalLMOutputWithPast(
1206
+ loss=loss,
1207
+ logits=logits,
1208
+ past_key_values=outputs.past_key_values,
1209
+ hidden_states=outputs.hidden_states,
1210
+ attentions=outputs.attentions,
1211
+ )
1212
+
1213
+ def prepare_inputs_for_generation(
1214
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
1215
+ ):
1216
+ # With static cache, the `past_key_values` is None
1217
+ # TODO joao: standardize interface for the different Cache classes and remove of this if
1218
+ has_static_cache = False
1219
+ if past_key_values is None:
1220
+ past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
1221
+ has_static_cache = past_key_values is not None
1222
+
1223
+ past_length = 0
1224
+ if past_key_values is not None:
1225
+ if isinstance(past_key_values, Cache):
1226
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1227
+ max_cache_length = (
1228
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1229
+ if past_key_values.get_max_length() is not None
1230
+ else None
1231
+ )
1232
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1233
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1234
+ else:
1235
+ cache_length = past_length = past_key_values[0][0].shape[2]
1236
+ max_cache_length = None
1237
+
1238
+ # Keep only the unprocessed tokens:
1239
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1240
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1241
+ # input)
1242
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1243
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1244
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1245
+ # input_ids based on the past_length.
1246
+ elif past_length < input_ids.shape[1]:
1247
+ input_ids = input_ids[:, past_length:]
1248
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1249
+
1250
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1251
+ if (
1252
+ max_cache_length is not None
1253
+ and attention_mask is not None
1254
+ and cache_length + input_ids.shape[1] > max_cache_length
1255
+ ):
1256
+ attention_mask = attention_mask[:, -max_cache_length:]
1257
+
1258
+ position_ids = kwargs.get("position_ids", None)
1259
+ if attention_mask is not None and position_ids is None:
1260
+ # create position_ids on the fly for batch generation
1261
+ position_ids = attention_mask.long().cumsum(-1) - 1
1262
+ position_ids.masked_fill_(attention_mask == 0, 1)
1263
+ if past_key_values:
1264
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1265
+
1266
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1267
+ if inputs_embeds is not None and past_key_values is None:
1268
+ model_inputs = {"inputs_embeds": inputs_embeds}
1269
+ else:
1270
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1271
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1272
+ # TODO: use `next_tokens` directly instead.
1273
+ model_inputs = {"input_ids": input_ids.contiguous()}
1274
+
1275
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1276
+ if cache_position is None:
1277
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1278
+ else:
1279
+ cache_position = cache_position[-input_length:]
1280
+
1281
+ if has_static_cache:
1282
+ past_key_values = None
1283
+
1284
+ model_inputs.update(
1285
+ {
1286
+ "position_ids": position_ids,
1287
+ "cache_position": cache_position,
1288
+ "past_key_values": past_key_values,
1289
+ "use_cache": kwargs.get("use_cache"),
1290
+ "attention_mask": attention_mask,
1291
+ }
1292
+ )
1293
+ return model_inputs
1294
+
1295
+ @staticmethod
1296
+ def _reorder_cache(past_key_values, beam_idx):
1297
+ reordered_past = ()
1298
+ for layer_past in past_key_values:
1299
+ reordered_past += (
1300
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1301
+ )
1302
+ return reordered_past
1303
+
1304
+
1305
+ @add_start_docstrings(
1306
+ """
1307
+ The Tele-FLM Model transformer with a sequence classification head on top (linear layer).
1308
+
1309
+ [`TeleFLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1310
+ (e.g. GPT-2) do.
1311
+
1312
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1313
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1314
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1315
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1316
+ each row of the batch).
1317
+ """,
1318
+ TELEFLM_START_DOCSTRING,
1319
+ )
1320
+ class TeleFLMForSequenceClassification(TeleFLMPreTrainedModel):
1321
+ def __init__(self, config):
1322
+ super().__init__(config)
1323
+ self.num_labels = config.num_labels
1324
+ self.model = TeleFLMModel(config)
1325
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1326
+
1327
+ # Initialize weights and apply final processing
1328
+ self.post_init()
1329
+
1330
+ def get_input_embeddings(self):
1331
+ return self.model.embed_tokens
1332
+
1333
+ def set_input_embeddings(self, value):
1334
+ self.model.embed_tokens = value
1335
+
1336
+ @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
1337
+ def forward(
1338
+ self,
1339
+ input_ids: torch.LongTensor = None,
1340
+ attention_mask: Optional[torch.Tensor] = None,
1341
+ position_ids: Optional[torch.LongTensor] = None,
1342
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1343
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1344
+ labels: Optional[torch.LongTensor] = None,
1345
+ use_cache: Optional[bool] = None,
1346
+ output_attentions: Optional[bool] = None,
1347
+ output_hidden_states: Optional[bool] = None,
1348
+ return_dict: Optional[bool] = None,
1349
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1350
+ r"""
1351
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1352
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1353
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1354
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1355
+ """
1356
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1357
+
1358
+ transformer_outputs = self.model(
1359
+ input_ids,
1360
+ attention_mask=attention_mask,
1361
+ position_ids=position_ids,
1362
+ past_key_values=past_key_values,
1363
+ inputs_embeds=inputs_embeds,
1364
+ use_cache=use_cache,
1365
+ output_attentions=output_attentions,
1366
+ output_hidden_states=output_hidden_states,
1367
+ return_dict=return_dict,
1368
+ )
1369
+ hidden_states = transformer_outputs[0]
1370
+ logits = self.score(hidden_states)
1371
+
1372
+ if input_ids is not None:
1373
+ batch_size = input_ids.shape[0]
1374
+ else:
1375
+ batch_size = inputs_embeds.shape[0]
1376
+
1377
+ if self.config.pad_token_id is None and batch_size != 1:
1378
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1379
+ if self.config.pad_token_id is None:
1380
+ sequence_lengths = -1
1381
+ else:
1382
+ if input_ids is not None:
1383
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1384
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1385
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1386
+ sequence_lengths = sequence_lengths.to(logits.device)
1387
+ else:
1388
+ sequence_lengths = -1
1389
+
1390
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1391
+
1392
+ loss = None
1393
+ if labels is not None:
1394
+ labels = labels.to(logits.device)
1395
+ if self.config.problem_type is None:
1396
+ if self.num_labels == 1:
1397
+ self.config.problem_type = "regression"
1398
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1399
+ self.config.problem_type = "single_label_classification"
1400
+ else:
1401
+ self.config.problem_type = "multi_label_classification"
1402
+
1403
+ if self.config.problem_type == "regression":
1404
+ loss_fct = MSELoss()
1405
+ if self.num_labels == 1:
1406
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1407
+ else:
1408
+ loss = loss_fct(pooled_logits, labels)
1409
+ elif self.config.problem_type == "single_label_classification":
1410
+ loss_fct = CrossEntropyLoss()
1411
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1412
+ elif self.config.problem_type == "multi_label_classification":
1413
+ loss_fct = BCEWithLogitsLoss()
1414
+ loss = loss_fct(pooled_logits, labels)
1415
+ if not return_dict:
1416
+ output = (pooled_logits,) + transformer_outputs[1:]
1417
+ return ((loss,) + output) if loss is not None else output
1418
+
1419
+ return SequenceClassifierOutputWithPast(
1420
+ loss=loss,
1421
+ logits=pooled_logits,
1422
+ past_key_values=transformer_outputs.past_key_values,
1423
+ hidden_states=transformer_outputs.hidden_states,
1424
+ attentions=transformer_outputs.attentions,
1425
+ )
1426
+
1427
+
1428
+ @add_start_docstrings(
1429
+ """
1430
+ The TeleFLM Model transformer with a span classification head on top for extractive question-answering tasks like
1431
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1432
+ """,
1433
+ TELEFLM_START_DOCSTRING,
1434
+ )
1435
+ class TeleFLMForQuestionAnswering(TeleFLMPreTrainedModel):
1436
+ base_model_prefix = "transformer"
1437
+
1438
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TeleFLM
1439
+ def __init__(self, config):
1440
+ super().__init__(config)
1441
+ self.transformer = TeleFLMModel(config)
1442
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1443
+
1444
+ # Initialize weights and apply final processing
1445
+ self.post_init()
1446
+
1447
+ def get_input_embeddings(self):
1448
+ return self.transformer.embed_tokens
1449
+
1450
+ def set_input_embeddings(self, value):
1451
+ self.transformer.embed_tokens = value
1452
+
1453
+ @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
1454
+ def forward(
1455
+ self,
1456
+ input_ids: Optional[torch.LongTensor] = None,
1457
+ attention_mask: Optional[torch.FloatTensor] = None,
1458
+ position_ids: Optional[torch.LongTensor] = None,
1459
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1460
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1461
+ start_positions: Optional[torch.LongTensor] = None,
1462
+ end_positions: Optional[torch.LongTensor] = None,
1463
+ output_attentions: Optional[bool] = None,
1464
+ output_hidden_states: Optional[bool] = None,
1465
+ return_dict: Optional[bool] = None,
1466
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1467
+ r"""
1468
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1469
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1470
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1471
+ are not taken into account for computing the loss.
1472
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1473
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1474
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1475
+ are not taken into account for computing the loss.
1476
+ """
1477
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1478
+
1479
+ outputs = self.transformer(
1480
+ input_ids,
1481
+ attention_mask=attention_mask,
1482
+ position_ids=position_ids,
1483
+ past_key_values=past_key_values,
1484
+ inputs_embeds=inputs_embeds,
1485
+ output_attentions=output_attentions,
1486
+ output_hidden_states=output_hidden_states,
1487
+ return_dict=return_dict,
1488
+ )
1489
+
1490
+ sequence_output = outputs[0]
1491
+
1492
+ logits = self.qa_outputs(sequence_output)
1493
+ start_logits, end_logits = logits.split(1, dim=-1)
1494
+ start_logits = start_logits.squeeze(-1).contiguous()
1495
+ end_logits = end_logits.squeeze(-1).contiguous()
1496
+
1497
+ total_loss = None
1498
+ if start_positions is not None and end_positions is not None:
1499
+ # If we are on multi-GPU, split add a dimension
1500
+ if len(start_positions.size()) > 1:
1501
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1502
+ if len(end_positions.size()) > 1:
1503
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1504
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1505
+ ignored_index = start_logits.size(1)
1506
+ start_positions = start_positions.clamp(0, ignored_index)
1507
+ end_positions = end_positions.clamp(0, ignored_index)
1508
+
1509
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1510
+ start_loss = loss_fct(start_logits, start_positions)
1511
+ end_loss = loss_fct(end_logits, end_positions)
1512
+ total_loss = (start_loss + end_loss) / 2
1513
+
1514
+ if not return_dict:
1515
+ output = (start_logits, end_logits) + outputs[2:]
1516
+ return ((total_loss,) + output) if total_loss is not None else output
1517
+
1518
+ return QuestionAnsweringModelOutput(
1519
+ loss=total_loss,
1520
+ start_logits=start_logits,
1521
+ end_logits=end_logits,
1522
+ hidden_states=outputs.hidden_states,
1523
+ attentions=outputs.attentions,
1524
+ )