jasonfang3900
commited on
Commit
•
8a01860
1
Parent(s):
df0b4d6
First Upload.
Browse files- .gitattributes +22 -0
- added_tokens.json +6 -0
- config.json +43 -0
- configuration_flm.py +208 -0
- merges.txt +0 -0
- modeling_flm.py +954 -0
- pytorch_model-00001-of-00022.bin +3 -0
- pytorch_model-00002-of-00022.bin +3 -0
- pytorch_model-00003-of-00022.bin +3 -0
- pytorch_model-00004-of-00022.bin +3 -0
- pytorch_model-00005-of-00022.bin +3 -0
- pytorch_model-00006-of-00022.bin +3 -0
- pytorch_model-00007-of-00022.bin +3 -0
- pytorch_model-00008-of-00022.bin +3 -0
- pytorch_model-00009-of-00022.bin +3 -0
- pytorch_model-00010-of-00022.bin +3 -0
- pytorch_model-00011-of-00022.bin +3 -0
- pytorch_model-00012-of-00022.bin +3 -0
- pytorch_model-00013-of-00022.bin +3 -0
- pytorch_model-00014-of-00022.bin +3 -0
- pytorch_model-00015-of-00022.bin +3 -0
- pytorch_model-00016-of-00022.bin +3 -0
- pytorch_model-00017-of-00022.bin +3 -0
- pytorch_model-00018-of-00022.bin +3 -0
- pytorch_model-00019-of-00022.bin +3 -0
- pytorch_model-00020-of-00022.bin +3 -0
- pytorch_model-00021-of-00022.bin +3 -0
- pytorch_model-00022-of-00022.bin +3 -0
- pytorch_model.bin.index.json +1131 -0
- special_tokens_map.json +29 -0
- tokenization_freelm.py +30 -0
- tokenizer_config.json +41 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model-00001-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
37 |
+
pytorch_model-00016-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
38 |
+
pytorch_model-00020-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
39 |
+
pytorch_model-00002-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
40 |
+
pytorch_model-00004-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
41 |
+
pytorch_model-00008-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
42 |
+
pytorch_model-00013-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
43 |
+
pytorch_model-00014-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
44 |
+
pytorch_model-00015-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
45 |
+
pytorch_model-00021-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
46 |
+
pytorch_model-00022-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
47 |
+
pytorch_model-00005-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
48 |
+
pytorch_model-00010-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
49 |
+
pytorch_model-00012-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
50 |
+
pytorch_model-00019-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
51 |
+
pytorch_model-00007-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
52 |
+
pytorch_model-00009-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
53 |
+
pytorch_model-00017-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
54 |
+
pytorch_model-00018-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
55 |
+
pytorch_model-00003-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
56 |
+
pytorch_model-00006-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
57 |
+
pytorch_model-00011-of-00022.bin filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[cls]": 100259,
|
3 |
+
"[pad]": 100258,
|
4 |
+
"[sep]": 100260,
|
5 |
+
"[tsk]": 100257
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_fast",
|
3 |
+
"attn_pdrop": 0.1,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoConfig": "configuration_flm.FLMConfig",
|
6 |
+
"AutoModel": "modeling_flm.FLM",
|
7 |
+
"AutoModelForCausalLM": "modeling_flm.FLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 100351,
|
10 |
+
"cls_token_id": 100351,
|
11 |
+
"embd_pdrop": 0.1,
|
12 |
+
"eos_token_id": 100351,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"input_mult": 1.0,
|
15 |
+
"layer_norm_epsilon": 1e-05,
|
16 |
+
"model_type": "flm",
|
17 |
+
"mup_base_width": 256,
|
18 |
+
"mup_scale_factor": 40.0,
|
19 |
+
"n_embd": 10240,
|
20 |
+
"n_head": 80,
|
21 |
+
"n_inner": 40960,
|
22 |
+
"n_layer": 80,
|
23 |
+
"n_positions": 2048,
|
24 |
+
"output_mult": 2.0,
|
25 |
+
"relative_encoding": "rotary",
|
26 |
+
"reorder_and_upcast_attn": true,
|
27 |
+
"resid_pdrop": 0.1,
|
28 |
+
"rotary_theta": 10000,
|
29 |
+
"rotary_use_xpos": true,
|
30 |
+
"rotary_xpos_scale_base": 512,
|
31 |
+
"scale_attn_by_inverse_layer_idx": true,
|
32 |
+
"scale_attn_weights": true,
|
33 |
+
"summary_activation": null,
|
34 |
+
"summary_first_dropout": 0.1,
|
35 |
+
"summary_proj_to_labels": true,
|
36 |
+
"summary_type": "cls_index",
|
37 |
+
"summary_use_proj": true,
|
38 |
+
"tokenizer_class": "FLMTokenizer",
|
39 |
+
"transformers_version": "4.30.2",
|
40 |
+
"use_cache": true,
|
41 |
+
"use_mup": true,
|
42 |
+
"vocab_size": 100352
|
43 |
+
}
|
configuration_flm.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright
|
3 |
+
|
4 |
+
""" Cofe-AI FLM configuration"""
|
5 |
+
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
FLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
14 |
+
# "freelm": "xxxx/config.json",
|
15 |
+
# "freelm-medium": "xxxx/config.json",
|
16 |
+
# "freelm-large": "xxxx/config.json",
|
17 |
+
# "freelm-xl": "xxxx/config.json",
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
class FLMConfig(PretrainedConfig):
|
22 |
+
"""
|
23 |
+
xxxxxx
|
24 |
+
|
25 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
26 |
+
documentation from [`PretrainedConfig`] for more information.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
30 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
31 |
+
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
|
32 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
33 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
34 |
+
just in case (e.g., 512 or 1024 or 2048).
|
35 |
+
n_embd (`int`, *optional*, defaults to 768):
|
36 |
+
Dimensionality of the embeddings and hidden states.
|
37 |
+
n_layer (`int`, *optional*, defaults to 12):
|
38 |
+
Number of hidden layers in the Transformer encoder.
|
39 |
+
n_head (`int`, *optional*, defaults to 12):
|
40 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
41 |
+
n_inner (`int`, *optional*, defaults to None):
|
42 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
43 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
44 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
45 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
46 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
47 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
48 |
+
The dropout ratio for the embeddings.
|
49 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout ratio for the attention.
|
51 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
52 |
+
The epsilon to use in the layer normalization layers.
|
53 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
54 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
55 |
+
summary_type (`string`, *optional*, defaults to `"cls_index"`):
|
56 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
57 |
+
[`TFGPT2DoubleHeadsModel`].
|
58 |
+
|
59 |
+
Has to be one of the following options:
|
60 |
+
|
61 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
62 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
63 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
64 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
65 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
66 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
67 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
68 |
+
[`TFGPT2DoubleHeadsModel`].
|
69 |
+
|
70 |
+
Whether or not to add a projection after the vector extraction.
|
71 |
+
summary_activation (`str`, *optional*):
|
72 |
+
Argument used when doing sequence summary. Used in for the multiple choice head in
|
73 |
+
[`GPT2DoubleHeadsModel`].
|
74 |
+
|
75 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
76 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
77 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
78 |
+
[`TFGPT2DoubleHeadsModel`].
|
79 |
+
|
80 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
81 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
82 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
83 |
+
[`TFGPT2DoubleHeadsModel`].
|
84 |
+
|
85 |
+
The dropout ratio to be used after the projection and activation.
|
86 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
87 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
88 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
90 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
92 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
94 |
+
dot-product/softmax to float() when training with mixed precision.
|
95 |
+
|
96 |
+
Example:
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from transformers import GPT2Config, GPT2Model
|
100 |
+
|
101 |
+
>>> # Initializing a GPT2 configuration
|
102 |
+
>>> configuration = GPT2Config()
|
103 |
+
|
104 |
+
>>> # Initializing a model (with random weights) from the configuration
|
105 |
+
>>> model = GPT2Model(configuration)
|
106 |
+
|
107 |
+
>>> # Accessing the model configuration
|
108 |
+
>>> configuration = model.config
|
109 |
+
```"""
|
110 |
+
|
111 |
+
model_type = "flm"
|
112 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
113 |
+
attribute_map = {
|
114 |
+
"hidden_size": "n_embd",
|
115 |
+
"max_position_embeddings": "n_positions",
|
116 |
+
"num_attention_heads": "n_head",
|
117 |
+
"num_hidden_layers": "n_layer",
|
118 |
+
}
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_size=50257,
|
123 |
+
n_positions=1024,
|
124 |
+
n_embd=768,
|
125 |
+
n_layer=12,
|
126 |
+
n_head=12,
|
127 |
+
n_inner=None,
|
128 |
+
activation_function="gelu_new",
|
129 |
+
resid_pdrop=0.1,
|
130 |
+
embd_pdrop=0.1,
|
131 |
+
attn_pdrop=0.1,
|
132 |
+
layer_norm_epsilon=1e-5,
|
133 |
+
initializer_range=0.02,
|
134 |
+
summary_type="cls_index",
|
135 |
+
summary_use_proj=True,
|
136 |
+
summary_activation=None,
|
137 |
+
summary_proj_to_labels=True,
|
138 |
+
summary_first_dropout=0.1,
|
139 |
+
scale_attn_weights=True,
|
140 |
+
use_cache=True,
|
141 |
+
bos_token_id=50256,
|
142 |
+
eos_token_id=50256,
|
143 |
+
cls_token_id=50256,
|
144 |
+
sep_token_id=50256,
|
145 |
+
pad_token_id=50256,
|
146 |
+
scale_attn_by_inverse_layer_idx=False,
|
147 |
+
reorder_and_upcast_attn=False,
|
148 |
+
relative_encoding=None,
|
149 |
+
rotary_theta=10000,
|
150 |
+
rotary_use_xpos=True,
|
151 |
+
rotary_xpos_scale_base=512,
|
152 |
+
use_mup=False,
|
153 |
+
mup_scale_factor=1.0,
|
154 |
+
output_mult=1.0,
|
155 |
+
input_mult=1.0,
|
156 |
+
mup_base_width=256,
|
157 |
+
**kwargs,
|
158 |
+
):
|
159 |
+
self.vocab_size = vocab_size
|
160 |
+
self.n_positions = n_positions
|
161 |
+
self.n_embd = n_embd
|
162 |
+
self.n_layer = n_layer
|
163 |
+
self.n_head = n_head
|
164 |
+
self.n_inner = n_inner
|
165 |
+
self.activation_function = activation_function
|
166 |
+
self.resid_pdrop = resid_pdrop
|
167 |
+
self.embd_pdrop = embd_pdrop
|
168 |
+
self.attn_pdrop = attn_pdrop
|
169 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
170 |
+
self.initializer_range = initializer_range
|
171 |
+
self.summary_type = summary_type
|
172 |
+
self.summary_use_proj = summary_use_proj
|
173 |
+
self.summary_activation = summary_activation
|
174 |
+
self.summary_first_dropout = summary_first_dropout
|
175 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
176 |
+
self.scale_attn_weights = scale_attn_weights
|
177 |
+
self.use_cache = use_cache
|
178 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
179 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
180 |
+
self.relative_encoding = relative_encoding
|
181 |
+
|
182 |
+
# for rotary
|
183 |
+
self.rotary_theta = rotary_theta
|
184 |
+
self.rotary_use_xpos = rotary_use_xpos
|
185 |
+
self.rotary_xpos_scale_base = rotary_xpos_scale_base
|
186 |
+
|
187 |
+
# for mup
|
188 |
+
self.use_mup = use_mup
|
189 |
+
self.mup_scale_factor = mup_scale_factor
|
190 |
+
self.output_mult = output_mult
|
191 |
+
self.input_mult = input_mult
|
192 |
+
self.mup_base_width = mup_base_width
|
193 |
+
|
194 |
+
self.bos_token_id = bos_token_id
|
195 |
+
self.eos_token_id = eos_token_id
|
196 |
+
self.cls_token_id = cls_token_id
|
197 |
+
self.sep_token_id = sep_token_id
|
198 |
+
self.pad_token_id = pad_token_id
|
199 |
+
|
200 |
+
|
201 |
+
self.architectures = ["FLM"]
|
202 |
+
self.auto_map = {
|
203 |
+
"AutoConfig": "configuration_flm.FLMConfig",
|
204 |
+
"AutoModel": "modeling_flm.FLM",
|
205 |
+
"AutoModelForCausalLM": "modeling_flm.FLM"
|
206 |
+
}
|
207 |
+
|
208 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_flm.py
ADDED
@@ -0,0 +1,954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on OpenAI's GPT-2 library. It has been modified from its
|
5 |
+
# original forms to accommodate minor architectural differences compared to GPT-2.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import math
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as f
|
23 |
+
from einops import rearrange, repeat
|
24 |
+
from torch import einsum, nn
|
25 |
+
from torch.cuda.amp import autocast
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
CausalLMOutputWithCrossAttentions,
|
30 |
+
SequenceClassifierOutputWithPast,
|
31 |
+
)
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_conv1d_layer
|
34 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
35 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
36 |
+
from .configuration_flm import FLMConfig
|
37 |
+
|
38 |
+
|
39 |
+
class Conv1D(nn.Module):
|
40 |
+
|
41 |
+
def __init__(self, nf, nx):
|
42 |
+
super().__init__()
|
43 |
+
self.nf = nf
|
44 |
+
self.weight = nn.Parameter(torch.empty(nx, nf))
|
45 |
+
self.bias = nn.Parameter(torch.zeros(nf))
|
46 |
+
nn.init.normal_(self.weight, std=0.02)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x = torch.matmul(x, self.weight) + self.bias
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
def exists(v):
|
57 |
+
return v is not None
|
58 |
+
|
59 |
+
|
60 |
+
class RotaryEmbedding(nn.Module):
|
61 |
+
def __init__(self, dim, use_xpos=False, xpos_scale_base=512, theta=10000):
|
62 |
+
super().__init__()
|
63 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
64 |
+
self.register_buffer('inv_freq', inv_freq)
|
65 |
+
self.cache = dict()
|
66 |
+
self.cache_scale = dict()
|
67 |
+
self.use_xpos = use_xpos
|
68 |
+
if not use_xpos:
|
69 |
+
self.register_buffer('scale', None)
|
70 |
+
return
|
71 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
72 |
+
self.register_buffer('scale', scale)
|
73 |
+
self.scale_base = xpos_scale_base
|
74 |
+
|
75 |
+
def forward(self, seq, cache_key=None):
|
76 |
+
|
77 |
+
if cache_key is not None and cache_key in self.cache:
|
78 |
+
return self.cache[cache_key]
|
79 |
+
|
80 |
+
inv_freq = self.inv_freq.to(device=seq.device)
|
81 |
+
freqs = einsum('i , j -> i j', seq, inv_freq)
|
82 |
+
# first part even vector components, second part odd vector components,
|
83 |
+
# 2 * dim in dimension size
|
84 |
+
scale = torch.cat((freqs, freqs), dim=-1)
|
85 |
+
if exists(cache_key):
|
86 |
+
self.cache[cache_key] = scale
|
87 |
+
return scale
|
88 |
+
|
89 |
+
def rotate_queries_and_keys(self, q, k, seq_dim=-2):
|
90 |
+
"""
|
91 |
+
use this only when xpos is activated.
|
92 |
+
"""
|
93 |
+
assert self.use_xpos and q.device == k.device
|
94 |
+
device, seq_len_k, seq_len_q = k.device, k.shape[seq_dim], q.shape[seq_dim]
|
95 |
+
pos_seq_k = torch.arange(seq_len_k, device=device, dtype=torch.float32)
|
96 |
+
pos_seq_q = torch.arange(seq_len_k - seq_len_q, seq_len_k, device=device, dtype=torch.float32)
|
97 |
+
freqs_k = self.forward(pos_seq_k, cache_key=f"{0}:{seq_len_k}")
|
98 |
+
freqs_q = self.forward(pos_seq_q, cache_key=f"{seq_len_k - seq_len_q}:{seq_len_k}")
|
99 |
+
scale_k = self.get_scale(pos_seq_k)
|
100 |
+
scale_q = self.get_scale(pos_seq_q, offset=seq_len_k - seq_len_q) # 这里的offset是Q相对于K的offset
|
101 |
+
rotated_q = apply_rotary_emb(freqs_q, q, scale=scale_q)
|
102 |
+
rotated_k = apply_rotary_emb(freqs_k, k, scale=scale_k ** -1)
|
103 |
+
return rotated_q, rotated_k
|
104 |
+
|
105 |
+
def get_scale(self, t, cache_key=None, offset=0, ):
|
106 |
+
assert self.use_xpos, 'This function is only useful for xpos.'
|
107 |
+
if exists(cache_key) and cache_key in self.cache_scale:
|
108 |
+
return self.cache_scale[cache_key]
|
109 |
+
if callable(t):
|
110 |
+
t = t()
|
111 |
+
length = len(t)
|
112 |
+
min_pos = -(length + offset) // 2
|
113 |
+
max_pos = length + offset + min_pos
|
114 |
+
power = torch.arange(min_pos, max_pos, 1).to(device=self.scale.device) / self.scale_base
|
115 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
116 |
+
scale = scale[-length:, :]
|
117 |
+
scale = torch.cat((scale, scale), dim=-1)
|
118 |
+
if exists(cache_key):
|
119 |
+
self.cache_scale[cache_key] = scale
|
120 |
+
return scale
|
121 |
+
|
122 |
+
|
123 |
+
def rotate_half(x):
|
124 |
+
"""
|
125 |
+
change sign so the last dimension becomes [-odd, +even]
|
126 |
+
"""
|
127 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
128 |
+
return torch.cat((-x2, x1), dim=-1)
|
129 |
+
|
130 |
+
|
131 |
+
def apply_rotary_emb(freqs, t, start_index=0, scale=1.):
|
132 |
+
"""
|
133 |
+
freq: seqlen x dim
|
134 |
+
t: [batchsize * headnum , seqlen , dim (dim_of_head actually)]
|
135 |
+
"""
|
136 |
+
dtype_t = t.dtype
|
137 |
+
freqs = freqs.to(device=t.device)
|
138 |
+
if isinstance(scale, torch.Tensor):
|
139 |
+
scale = scale.to(device=t.device)
|
140 |
+
rot_dim = freqs.shape[-1]
|
141 |
+
end_index = start_index + rot_dim
|
142 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
143 |
+
t = (t * freqs.cos() + rotate_half(t) * freqs.sin()) * scale
|
144 |
+
rotated = torch.cat((t_left, t, t_right), dim=-1)
|
145 |
+
rotated = rotated.to(dtype=dtype_t)
|
146 |
+
return rotated
|
147 |
+
|
148 |
+
|
149 |
+
class FLMAttention(nn.Module):
|
150 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
max_positions = config.max_position_embeddings
|
154 |
+
self.register_buffer(
|
155 |
+
"bias",
|
156 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
157 |
+
1, 1, max_positions, max_positions
|
158 |
+
),
|
159 |
+
)
|
160 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
161 |
+
|
162 |
+
self.embed_dim = config.hidden_size
|
163 |
+
self.num_heads = config.num_attention_heads
|
164 |
+
self.head_dim = self.embed_dim // self.num_heads
|
165 |
+
self.split_size = self.embed_dim
|
166 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
167 |
+
raise ValueError(
|
168 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
169 |
+
f" {self.num_heads})."
|
170 |
+
)
|
171 |
+
|
172 |
+
self.scale_attn_weights = config.scale_attn_weights
|
173 |
+
self.is_cross_attention = is_cross_attention
|
174 |
+
|
175 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
176 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
177 |
+
# for alignment with megatron-lm in softmax scale
|
178 |
+
self.layer_idx = max(1, layer_idx)
|
179 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
180 |
+
|
181 |
+
self.relative_encoding = config.relative_encoding
|
182 |
+
self.rotary_use_xpos = config.rotary_use_xpos
|
183 |
+
|
184 |
+
self.use_mup = config.use_mup
|
185 |
+
|
186 |
+
if self.is_cross_attention:
|
187 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
188 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
189 |
+
else:
|
190 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
191 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
192 |
+
|
193 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
194 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
195 |
+
|
196 |
+
self.pruned_heads = set()
|
197 |
+
|
198 |
+
def set_max_positions(self, max_positions, device='cuda'):
|
199 |
+
self.max_positions = max_positions
|
200 |
+
self.register_buffer(
|
201 |
+
"bias",
|
202 |
+
torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)).view(
|
203 |
+
1, 1, self.max_positions, self.max_positions
|
204 |
+
).to(device=device)
|
205 |
+
)
|
206 |
+
|
207 |
+
def prune_heads(self, heads):
|
208 |
+
if len(heads) == 0:
|
209 |
+
return
|
210 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
211 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
212 |
+
|
213 |
+
# Prune conv1d layers
|
214 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
215 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
216 |
+
|
217 |
+
# Update hyper params
|
218 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
219 |
+
self.num_heads = self.num_heads - len(heads)
|
220 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
221 |
+
|
222 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
223 |
+
# (batch, head, seq_length, head_features)
|
224 |
+
# batch_size, head_num, k_seq_len(q_seq_len), head_features
|
225 |
+
batch_size, head_num, k_seq_len, head_features = key.shape
|
226 |
+
_, _, q_seq_len, _ = query.shape
|
227 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
228 |
+
|
229 |
+
if self.scale_attn_weights:
|
230 |
+
if self.use_mup:
|
231 |
+
attn_weights = attn_weights / torch.full(
|
232 |
+
[], value.size(-1) / (value.size(-1) ** 0.5), dtype=attn_weights.dtype,
|
233 |
+
device=attn_weights.device
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
attn_weights = attn_weights / torch.full(
|
237 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
238 |
+
)
|
239 |
+
|
240 |
+
if not self.is_cross_attention:
|
241 |
+
# if only "normal" attention layer implements causal mask
|
242 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
243 |
+
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
|
244 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
245 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
246 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
247 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
248 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
249 |
+
|
250 |
+
if attention_mask is not None:
|
251 |
+
# Apply the attention mask
|
252 |
+
attn_weights = attn_weights + attention_mask
|
253 |
+
|
254 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
255 |
+
|
256 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
257 |
+
attn_weights = attn_weights.type(value.dtype)
|
258 |
+
attn_weights = self.attn_dropout(attn_weights)
|
259 |
+
|
260 |
+
# Mask heads if we want to
|
261 |
+
if head_mask is not None:
|
262 |
+
attn_weights = attn_weights * head_mask
|
263 |
+
|
264 |
+
attn_output = torch.matmul(attn_weights, value)
|
265 |
+
|
266 |
+
return attn_output, attn_weights
|
267 |
+
|
268 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
269 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
270 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
271 |
+
_, _, k_seq_len, _ = key.size()
|
272 |
+
|
273 |
+
# Preallocate attn_weights for `baddbmm`
|
274 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=query.dtype, device=query.device)
|
275 |
+
|
276 |
+
# Compute Scale Factor
|
277 |
+
scale_factor = 1.0
|
278 |
+
if self.scale_attn_weights:
|
279 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
280 |
+
|
281 |
+
if self.scale_attn_by_inverse_layer_idx:
|
282 |
+
scale_factor /= float(self.layer_idx)
|
283 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
284 |
+
with autocast(enabled=False):
|
285 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
286 |
+
attn_weights = torch.baddbmm(attn_weights, q, k, beta=0, alpha=scale_factor)
|
287 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
288 |
+
|
289 |
+
if not self.is_cross_attention:
|
290 |
+
attn_weights = attn_weights.float()
|
291 |
+
if self.scale_attn_by_inverse_layer_idx:
|
292 |
+
attn_weights *= self.layer_idx
|
293 |
+
# if only "normal" attention layer implements causal mask
|
294 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
295 |
+
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
|
296 |
+
mask_value = -10000.0 # align with megatron-lm
|
297 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
298 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
299 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
300 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
301 |
+
|
302 |
+
if attention_mask is not None:
|
303 |
+
# Apply the attention mask
|
304 |
+
attn_weights = attn_weights + attention_mask
|
305 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
306 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
307 |
+
if attn_weights.dtype != torch.float32:
|
308 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
309 |
+
attn_weights = attn_weights.type(value.dtype)
|
310 |
+
attn_weights = self.attn_dropout(attn_weights)
|
311 |
+
|
312 |
+
# Mask heads if we want to
|
313 |
+
if head_mask is not None:
|
314 |
+
attn_weights = attn_weights * head_mask
|
315 |
+
attn_output = torch.matmul(attn_weights, value)
|
316 |
+
return attn_output, attn_weights
|
317 |
+
|
318 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
319 |
+
"""
|
320 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
321 |
+
"""
|
322 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
323 |
+
tensor = tensor.view(new_shape)
|
324 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
325 |
+
|
326 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
327 |
+
"""
|
328 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
329 |
+
"""
|
330 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
331 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
332 |
+
return tensor.view(new_shape)
|
333 |
+
|
334 |
+
def forward(
|
335 |
+
self,
|
336 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
337 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
338 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
339 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
340 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
341 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
342 |
+
rotary_embedding: Optional[RotaryEmbedding] = None,
|
343 |
+
use_cache: Optional[bool] = False,
|
344 |
+
output_attentions: Optional[bool] = False,
|
345 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
346 |
+
if encoder_hidden_states is not None:
|
347 |
+
if not hasattr(self, "q_attn"):
|
348 |
+
raise ValueError(
|
349 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
350 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
351 |
+
)
|
352 |
+
|
353 |
+
query = self.q_attn(hidden_states)
|
354 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
355 |
+
attention_mask = encoder_attention_mask
|
356 |
+
else:
|
357 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
358 |
+
|
359 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
360 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
361 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
362 |
+
|
363 |
+
if layer_past is not None:
|
364 |
+
past_key, past_value = layer_past
|
365 |
+
key = torch.cat((past_key, key), dim=-2)
|
366 |
+
value = torch.cat((past_value, value), dim=-2)
|
367 |
+
|
368 |
+
if use_cache is True:
|
369 |
+
present = (key, value)
|
370 |
+
else:
|
371 |
+
present = None
|
372 |
+
|
373 |
+
batch_size, head_num, k_seq_len, head_features = key.shape
|
374 |
+
_, _, q_seq_len, _ = query.shape
|
375 |
+
if rotary_embedding is not None:
|
376 |
+
query = query.contiguous().view(batch_size * head_num, q_seq_len, head_features)
|
377 |
+
key = key.contiguous().view(batch_size * head_num, k_seq_len, head_features)
|
378 |
+
|
379 |
+
# batch_size * head_num, k_seq_len(q_seq_len), head_features
|
380 |
+
if self.rotary_use_xpos:
|
381 |
+
# query: [batch_size * head_num, seqlen, hn]
|
382 |
+
query, key = rotary_embedding.rotate_queries_and_keys(query, key)
|
383 |
+
else:
|
384 |
+
query = rotary_embedding.rotate_queries_or_keys(query)
|
385 |
+
key = rotary_embedding.rotate_queries_or_keys(key)
|
386 |
+
# batch_size * head_num, k_seq_len(q_seq_len), head_features
|
387 |
+
query = query.view(batch_size, head_num, q_seq_len, head_features)
|
388 |
+
key = key.view(batch_size, head_num, k_seq_len, head_features)
|
389 |
+
|
390 |
+
if self.reorder_and_upcast_attn:
|
391 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
392 |
+
else:
|
393 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
394 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
395 |
+
attn_output = self.c_proj(attn_output)
|
396 |
+
attn_output = self.resid_dropout(attn_output)
|
397 |
+
outputs = (attn_output, present)
|
398 |
+
if output_attentions:
|
399 |
+
outputs += (attn_weights,)
|
400 |
+
|
401 |
+
return outputs
|
402 |
+
|
403 |
+
|
404 |
+
class FLMMLP(nn.Module):
|
405 |
+
def __init__(self, intermediate_size, config):
|
406 |
+
super().__init__()
|
407 |
+
embed_dim = config.hidden_size
|
408 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
409 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
410 |
+
self.act = ACT2FN[config.activation_function]
|
411 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
412 |
+
|
413 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
414 |
+
hidden_states = self.c_fc(hidden_states)
|
415 |
+
hidden_states = self.act(hidden_states)
|
416 |
+
hidden_states = self.c_proj(hidden_states)
|
417 |
+
hidden_states = self.dropout(hidden_states)
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
|
421 |
+
class FLMBlock(nn.Module):
|
422 |
+
def __init__(self, config, layer_idx=None):
|
423 |
+
super().__init__()
|
424 |
+
hidden_size = config.hidden_size
|
425 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
426 |
+
self.layer_idx = layer_idx
|
427 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
428 |
+
self.attn = FLMAttention(config, layer_idx=layer_idx)
|
429 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
430 |
+
|
431 |
+
if config.add_cross_attention:
|
432 |
+
self.crossattention = FLMAttention(config, is_cross_attention=True, layer_idx=layer_idx)
|
433 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
434 |
+
|
435 |
+
self.mlp = FLMMLP(inner_dim, config)
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
440 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
441 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
443 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
444 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
445 |
+
rotary_embedding: Optional[RotaryEmbedding] = None,
|
446 |
+
use_cache: Optional[bool] = False,
|
447 |
+
output_attentions: Optional[bool] = False,
|
448 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
449 |
+
residual = hidden_states
|
450 |
+
hidden_states = self.ln_1(hidden_states)
|
451 |
+
attn_outputs = self.attn(
|
452 |
+
hidden_states,
|
453 |
+
layer_past=layer_past,
|
454 |
+
attention_mask=attention_mask,
|
455 |
+
head_mask=head_mask,
|
456 |
+
rotary_embedding=rotary_embedding,
|
457 |
+
use_cache=use_cache,
|
458 |
+
output_attentions=output_attentions
|
459 |
+
)
|
460 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
461 |
+
outputs = attn_outputs[1:]
|
462 |
+
# residual connection
|
463 |
+
hidden_states = attn_output + residual
|
464 |
+
|
465 |
+
residual = hidden_states
|
466 |
+
hidden_states = self.ln_2(hidden_states)
|
467 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
468 |
+
# residual connection
|
469 |
+
hidden_states = residual + feed_forward_hidden_states
|
470 |
+
if use_cache:
|
471 |
+
outputs = (hidden_states,) + outputs
|
472 |
+
else:
|
473 |
+
outputs = (hidden_states,) + outputs[1:]
|
474 |
+
|
475 |
+
return outputs
|
476 |
+
|
477 |
+
|
478 |
+
class FLMPretrainedModel(PreTrainedModel):
|
479 |
+
"""
|
480 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
481 |
+
models.
|
482 |
+
"""
|
483 |
+
|
484 |
+
config_class = FLMConfig
|
485 |
+
load_tf_weights = None
|
486 |
+
base_model_prefix = "transformer"
|
487 |
+
is_parallelizable = True
|
488 |
+
supports_gradient_checkpointing = True
|
489 |
+
_no_split_modules = ["FLMBlock"]
|
490 |
+
|
491 |
+
def __init__(self, *inputs, **kwargs):
|
492 |
+
super().__init__(*inputs, **kwargs)
|
493 |
+
|
494 |
+
def _init_weights(self, module):
|
495 |
+
"""Initialize the weights."""
|
496 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
497 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
498 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
499 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
500 |
+
if module.bias is not None:
|
501 |
+
module.bias.data.zero_()
|
502 |
+
elif isinstance(module, nn.Embedding):
|
503 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
504 |
+
if module.padding_idx is not None:
|
505 |
+
module.weight.data[module.padding_idx].zero_()
|
506 |
+
elif isinstance(module, nn.LayerNorm):
|
507 |
+
module.bias.data.zero_()
|
508 |
+
module.weight.data.fill_(1.0)
|
509 |
+
|
510 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
511 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
512 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
513 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
514 |
+
#
|
515 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
516 |
+
for name, p in module.named_parameters():
|
517 |
+
if name == "c_proj.weight":
|
518 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
519 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
520 |
+
|
521 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
522 |
+
if isinstance(module, FLMTransformer):
|
523 |
+
module.gradient_checkpointing = value
|
524 |
+
|
525 |
+
|
526 |
+
class FLMTransformer(FLMPretrainedModel):
|
527 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
528 |
+
|
529 |
+
def __init__(self, config):
|
530 |
+
super().__init__(config)
|
531 |
+
|
532 |
+
self.embed_dim = config.hidden_size
|
533 |
+
|
534 |
+
self.relative_encoding = config.relative_encoding
|
535 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
536 |
+
|
537 |
+
self.use_mup = config.use_mup
|
538 |
+
if self.use_mup:
|
539 |
+
self.input_mult = config.input_mult
|
540 |
+
|
541 |
+
if self.relative_encoding is None:
|
542 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
543 |
+
elif self.relative_encoding == 'rotary':
|
544 |
+
pe_dim = config.n_embd // config.n_head
|
545 |
+
self.wpe = RotaryEmbedding(pe_dim,
|
546 |
+
use_xpos=config.rotary_use_xpos,
|
547 |
+
xpos_scale_base=config.rotary_xpos_scale_base,
|
548 |
+
theta=config.rotary_theta
|
549 |
+
)
|
550 |
+
|
551 |
+
else:
|
552 |
+
raise RuntimeError(
|
553 |
+
f'Unknown relative positional encoding type: `relative_encoding`={self.relative_encoding}')
|
554 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
555 |
+
self.h = nn.ModuleList([FLMBlock(config, layer_idx=i + 1) for i in range(config.num_hidden_layers)])
|
556 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
557 |
+
|
558 |
+
# Model parallel
|
559 |
+
self.model_parallel = False
|
560 |
+
self.device_map = None
|
561 |
+
self.gradient_checkpointing = False
|
562 |
+
|
563 |
+
# Initialize weights and apply final processing
|
564 |
+
self.post_init()
|
565 |
+
|
566 |
+
# @add_start_docstrings(PARALLELIZE_DOCSTRING)
|
567 |
+
def parallelize(self, device_map=None):
|
568 |
+
# Check validity of device_map
|
569 |
+
self.device_map = (
|
570 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
571 |
+
)
|
572 |
+
assert_device_map(self.device_map, len(self.h))
|
573 |
+
self.model_parallel = True
|
574 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
575 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
576 |
+
self.wte = self.wte.to(self.first_device)
|
577 |
+
self.wpe = self.wpe.to(self.first_device)
|
578 |
+
# Load onto devices
|
579 |
+
for k, v in self.device_map.items():
|
580 |
+
for block in v:
|
581 |
+
cuda_device = "cuda:" + str(k)
|
582 |
+
self.h[block] = self.h[block].to(cuda_device)
|
583 |
+
# ln_f to last
|
584 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
585 |
+
|
586 |
+
def deparallelize(self):
|
587 |
+
self.model_parallel = False
|
588 |
+
self.device_map = None
|
589 |
+
self.first_device = "cpu"
|
590 |
+
self.last_device = "cpu"
|
591 |
+
self.wte = self.wte.to("cpu")
|
592 |
+
self.wpe = self.wpe.to("cpu")
|
593 |
+
for index in range(len(self.h)):
|
594 |
+
self.h[index] = self.h[index].to("cpu")
|
595 |
+
self.ln_f = self.ln_f.to("cpu")
|
596 |
+
torch.cuda.empty_cache()
|
597 |
+
|
598 |
+
def get_input_embeddings(self):
|
599 |
+
return self.wte
|
600 |
+
|
601 |
+
def set_input_embeddings(self, new_embeddings):
|
602 |
+
self.wte = new_embeddings
|
603 |
+
|
604 |
+
def _prune_heads(self, heads_to_prune):
|
605 |
+
"""
|
606 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
607 |
+
"""
|
608 |
+
for layer, heads in heads_to_prune.items():
|
609 |
+
self.h[layer].attn.prune_heads(heads)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_ids: Optional[torch.LongTensor] = None,
|
614 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
615 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
616 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
617 |
+
position_ids: Optional[torch.LongTensor] = None,
|
618 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
619 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
620 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
621 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
622 |
+
use_cache: Optional[bool] = None,
|
623 |
+
output_attentions: Optional[bool] = None,
|
624 |
+
output_hidden_states: Optional[bool] = None,
|
625 |
+
return_dict: Optional[bool] = None,
|
626 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
627 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
628 |
+
output_hidden_states = (
|
629 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
630 |
+
)
|
631 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
632 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
633 |
+
|
634 |
+
if input_ids is not None and inputs_embeds is not None:
|
635 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
636 |
+
elif input_ids is not None:
|
637 |
+
input_shape = input_ids.size()
|
638 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
639 |
+
batch_size = input_ids.shape[0]
|
640 |
+
elif inputs_embeds is not None:
|
641 |
+
input_shape = inputs_embeds.size()[:-1]
|
642 |
+
batch_size = inputs_embeds.shape[0]
|
643 |
+
else:
|
644 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
645 |
+
|
646 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
647 |
+
|
648 |
+
if token_type_ids is not None:
|
649 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
650 |
+
if position_ids is not None:
|
651 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
652 |
+
|
653 |
+
if past_key_values is None:
|
654 |
+
past_length = 0
|
655 |
+
past_key_values = tuple([None] * len(self.h))
|
656 |
+
else:
|
657 |
+
past_length = past_key_values[0][0].size(-2)
|
658 |
+
if position_ids is None:
|
659 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
660 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
661 |
+
|
662 |
+
# GPT2Attention mask.
|
663 |
+
if attention_mask is not None:
|
664 |
+
if batch_size <= 0:
|
665 |
+
raise ValueError("batch_size has to be defined and > 0")
|
666 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
667 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
668 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
669 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
670 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
671 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
672 |
+
attention_mask = attention_mask[:, None, None, :]
|
673 |
+
|
674 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
675 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
676 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
677 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
678 |
+
# effectively the same as removing these entirely.
|
679 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
680 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
681 |
+
|
682 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
683 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
684 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
685 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
686 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
687 |
+
if encoder_attention_mask is None:
|
688 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
689 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
690 |
+
else:
|
691 |
+
encoder_attention_mask = None
|
692 |
+
|
693 |
+
# Prepare head mask if needed
|
694 |
+
# 1.0 in head_mask indicate we keep the head
|
695 |
+
# attention_probs has shape bsz x n_heads x N x N
|
696 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
697 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
698 |
+
|
699 |
+
if inputs_embeds is None:
|
700 |
+
inputs_embeds = self.wte(input_ids)
|
701 |
+
|
702 |
+
# Mup
|
703 |
+
if self.use_mup:
|
704 |
+
inputs_embeds = inputs_embeds * self.input_mult
|
705 |
+
if self.relative_encoding is None:
|
706 |
+
position_embeds = self.wpe(position_ids)
|
707 |
+
hidden_states = inputs_embeds + position_embeds
|
708 |
+
elif self.relative_encoding == 'rotary':
|
709 |
+
hidden_states = inputs_embeds
|
710 |
+
if token_type_ids is not None:
|
711 |
+
token_type_embeds = self.wte(token_type_ids)
|
712 |
+
hidden_states = hidden_states + token_type_embeds
|
713 |
+
hidden_states = self.drop(hidden_states)
|
714 |
+
|
715 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
716 |
+
|
717 |
+
presents = () if use_cache else None
|
718 |
+
all_self_attentions = () if output_attentions else None
|
719 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
720 |
+
all_hidden_states = () if output_hidden_states else None
|
721 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
722 |
+
|
723 |
+
# Model parallel
|
724 |
+
if self.model_parallel:
|
725 |
+
torch.cuda.set_device(hidden_states.device)
|
726 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
727 |
+
if layer_past is not None:
|
728 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
729 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
730 |
+
if attention_mask is not None:
|
731 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
732 |
+
if isinstance(head_mask, torch.Tensor):
|
733 |
+
head_mask = head_mask.to(hidden_states.device)
|
734 |
+
if output_hidden_states:
|
735 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
736 |
+
|
737 |
+
if self.gradient_checkpointing and self.training:
|
738 |
+
|
739 |
+
if use_cache:
|
740 |
+
logger.warning(
|
741 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
742 |
+
)
|
743 |
+
use_cache = False
|
744 |
+
|
745 |
+
def create_custom_forward(module):
|
746 |
+
def custom_forward(*inputs):
|
747 |
+
# None for past_key_value
|
748 |
+
return module(*inputs, use_cache, output_attentions)
|
749 |
+
|
750 |
+
return custom_forward
|
751 |
+
|
752 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
753 |
+
create_custom_forward(block),
|
754 |
+
hidden_states,
|
755 |
+
None,
|
756 |
+
attention_mask,
|
757 |
+
head_mask[i],
|
758 |
+
encoder_hidden_states,
|
759 |
+
encoder_attention_mask,
|
760 |
+
)
|
761 |
+
else:
|
762 |
+
outputs = block(
|
763 |
+
hidden_states,
|
764 |
+
layer_past=layer_past,
|
765 |
+
attention_mask=attention_mask,
|
766 |
+
head_mask=head_mask[i],
|
767 |
+
encoder_hidden_states=encoder_hidden_states,
|
768 |
+
encoder_attention_mask=encoder_attention_mask,
|
769 |
+
rotary_embedding=self.wpe if self.relative_encoding == 'rotary' else None,
|
770 |
+
use_cache=use_cache,
|
771 |
+
output_attentions=output_attentions
|
772 |
+
)
|
773 |
+
|
774 |
+
hidden_states = outputs[0]
|
775 |
+
if use_cache is True:
|
776 |
+
presents = presents + (outputs[1],)
|
777 |
+
|
778 |
+
if output_attentions:
|
779 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
780 |
+
if self.config.add_cross_attention:
|
781 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
782 |
+
|
783 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
784 |
+
if self.model_parallel:
|
785 |
+
for k, v in self.device_map.items():
|
786 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
787 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
788 |
+
|
789 |
+
hidden_states = self.ln_f(hidden_states)
|
790 |
+
|
791 |
+
hidden_states = hidden_states.view(output_shape)
|
792 |
+
# Add last hidden state
|
793 |
+
if output_hidden_states:
|
794 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
795 |
+
|
796 |
+
if not return_dict:
|
797 |
+
return tuple(
|
798 |
+
v
|
799 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
800 |
+
if v is not None
|
801 |
+
)
|
802 |
+
|
803 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
804 |
+
last_hidden_state=hidden_states,
|
805 |
+
past_key_values=presents,
|
806 |
+
hidden_states=all_hidden_states,
|
807 |
+
attentions=all_self_attentions,
|
808 |
+
cross_attentions=all_cross_attentions,
|
809 |
+
)
|
810 |
+
|
811 |
+
|
812 |
+
class FLM(FLMPretrainedModel):
|
813 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
814 |
+
|
815 |
+
def __init__(self, config):
|
816 |
+
super().__init__(config)
|
817 |
+
self.transformer = FLMTransformer(config)
|
818 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
819 |
+
self.use_mup = config.use_mup
|
820 |
+
if self.use_mup:
|
821 |
+
self.mup_scale_factor = config.mup_scale_factor
|
822 |
+
self.output_mult = config.output_mult / self.mup_scale_factor
|
823 |
+
|
824 |
+
# Model parallel
|
825 |
+
self.model_parallel = False
|
826 |
+
self.device_map = None
|
827 |
+
|
828 |
+
# Initialize weights and apply final processing
|
829 |
+
self.post_init()
|
830 |
+
|
831 |
+
def set_max_positions(self, max_positions):
|
832 |
+
for layer in self.transformer.h:
|
833 |
+
device = layer.ln_1.weight.device
|
834 |
+
layer.attn.set_max_positions(max_positions, device=device)
|
835 |
+
|
836 |
+
def parallelize(self, device_map=None):
|
837 |
+
self.device_map = (
|
838 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
839 |
+
if device_map is None
|
840 |
+
else device_map
|
841 |
+
)
|
842 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
843 |
+
self.transformer.parallelize(self.device_map)
|
844 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
845 |
+
self.model_parallel = True
|
846 |
+
|
847 |
+
def deparallelize(self):
|
848 |
+
self.transformer.deparallelize()
|
849 |
+
self.transformer = self.transformer.to("cpu")
|
850 |
+
self.lm_head = self.lm_head.to("cpu")
|
851 |
+
self.model_parallel = False
|
852 |
+
torch.cuda.empty_cache()
|
853 |
+
|
854 |
+
def get_output_embeddings(self):
|
855 |
+
return self.lm_head
|
856 |
+
|
857 |
+
def set_output_embeddings(self, new_embeddings):
|
858 |
+
self.lm_head = new_embeddings
|
859 |
+
|
860 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
861 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
862 |
+
# only last token for inputs_ids if past is defined in kwargs
|
863 |
+
if past:
|
864 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
865 |
+
if token_type_ids is not None:
|
866 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
867 |
+
|
868 |
+
attention_mask = kwargs.get("attention_mask", None)
|
869 |
+
position_ids = kwargs.get("position_ids", None)
|
870 |
+
|
871 |
+
if attention_mask is not None and position_ids is None:
|
872 |
+
# create position_ids on the fly for batch generation
|
873 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
874 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
875 |
+
if past:
|
876 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
877 |
+
else:
|
878 |
+
position_ids = None
|
879 |
+
return {
|
880 |
+
"input_ids": input_ids,
|
881 |
+
"past_key_values": past,
|
882 |
+
"use_cache": kwargs.get("use_cache"),
|
883 |
+
"position_ids": position_ids,
|
884 |
+
"attention_mask": attention_mask,
|
885 |
+
"token_type_ids": token_type_ids,
|
886 |
+
}
|
887 |
+
|
888 |
+
def forward(
|
889 |
+
self,
|
890 |
+
input_ids: Optional[torch.LongTensor] = None,
|
891 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
892 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
893 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
894 |
+
position_ids: Optional[torch.LongTensor] = None,
|
895 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
896 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
897 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
898 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
899 |
+
labels: Optional[torch.LongTensor] = None,
|
900 |
+
use_cache: Optional[bool] = None,
|
901 |
+
output_attentions: Optional[bool] = None,
|
902 |
+
output_hidden_states: Optional[bool] = None,
|
903 |
+
return_dict: Optional[bool] = None,
|
904 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast]:
|
905 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
906 |
+
|
907 |
+
transformer_outputs = self.transformer(
|
908 |
+
input_ids,
|
909 |
+
past_key_values=past_key_values,
|
910 |
+
attention_mask=attention_mask,
|
911 |
+
token_type_ids=token_type_ids,
|
912 |
+
position_ids=position_ids,
|
913 |
+
head_mask=head_mask,
|
914 |
+
inputs_embeds=inputs_embeds,
|
915 |
+
encoder_hidden_states=encoder_hidden_states,
|
916 |
+
encoder_attention_mask=encoder_attention_mask,
|
917 |
+
use_cache=use_cache,
|
918 |
+
output_attentions=output_attentions,
|
919 |
+
output_hidden_states=output_hidden_states,
|
920 |
+
return_dict=return_dict
|
921 |
+
)
|
922 |
+
hidden_states = transformer_outputs[0]
|
923 |
+
|
924 |
+
# Set device for model parallelism
|
925 |
+
if self.model_parallel:
|
926 |
+
torch.cuda.set_device(self.transformer.first_device)
|
927 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
928 |
+
|
929 |
+
lm_logits = self.lm_head(hidden_states)
|
930 |
+
# Mup
|
931 |
+
if self.use_mup:
|
932 |
+
lm_logits = lm_logits * self.output_mult
|
933 |
+
|
934 |
+
loss = None
|
935 |
+
if labels is not None:
|
936 |
+
# Shift so that tokens < n predict n
|
937 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
938 |
+
shift_labels = labels[..., 1:].contiguous()
|
939 |
+
# Flatten the tokens
|
940 |
+
loss_fct = nn.CrossEntropyLoss()
|
941 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
942 |
+
|
943 |
+
if not return_dict:
|
944 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
945 |
+
return ((loss,) + output) if loss is not None else output
|
946 |
+
|
947 |
+
return CausalLMOutputWithCrossAttentions(
|
948 |
+
loss=loss,
|
949 |
+
logits=lm_logits,
|
950 |
+
past_key_values=transformer_outputs.past_key_values,
|
951 |
+
hidden_states=transformer_outputs.hidden_states,
|
952 |
+
attentions=transformer_outputs.attentions,
|
953 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
954 |
+
)
|
pytorch_model-00001-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f9e2c9695e2a3fe04b3067055d69faf5acc844fad447595b7f3b0203cdc31f0
|
3 |
+
size 9639365909
|
pytorch_model-00002-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3fb35d432efe84988fba6b3c42c99fd0e5d29075c8c0f53ae982ee5ef535e55
|
3 |
+
size 9253654563
|
pytorch_model-00003-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:354fe82894eb784714d8656abc405be0e11ce8083bb39de3a8e5329caffccab4
|
3 |
+
size 9262024111
|
pytorch_model-00004-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dc627ef3223487a59562a0ec2cc20321169546846787ab2b744e972d239345f
|
3 |
+
size 9891189603
|
pytorch_model-00005-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:650b9c4491b6e36c537430e2938c372a0ebb8bd40c1fe43d2c36f80e0b773023
|
3 |
+
size 9471759795
|
pytorch_model-00006-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18f884ca0727c74dacf5d3848f2db7655565285c4dd8ee0c2225b5cc1021db9c
|
3 |
+
size 9253654627
|
pytorch_model-00007-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b9b869f1c22ff677d05e47e3f7fc7931940fede69f935abd021c8c32e81d897
|
3 |
+
size 9262024175
|
pytorch_model-00008-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1698c72d96d2a6e1180535ad12cf7fd9ac6a7bda028899bfbbcb9c82280afbe2
|
3 |
+
size 9891189603
|
pytorch_model-00009-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18e065d2a6d2c514e228dcb7584bf6a5d096194d31cd2c6a70cbd72dabd68625
|
3 |
+
size 9471759795
|
pytorch_model-00010-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:480f83a3cba0ed3acff65c023ec50cf8a5f8f1fc64993b4812568fcefa32a4cd
|
3 |
+
size 9253654627
|
pytorch_model-00011-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004fa22a47e6e56c02370cda5daad0c593fa531885d582d9a6dc8ea45707780e
|
3 |
+
size 9262024175
|
pytorch_model-00012-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:701720da23937731d07a636b133a0a80b269753a08f0158b506df29f6664fb4d
|
3 |
+
size 9891189603
|
pytorch_model-00013-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ab873f367cd52ef369dee9c2cbbe855562c5c0d2bbb93923fc6b92fa63b4442
|
3 |
+
size 9471759795
|
pytorch_model-00014-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb1ffd9796a55082db31ba8f3ed301cea7db12ffbcc412111ae141334194d772
|
3 |
+
size 9253654627
|
pytorch_model-00015-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5f5820df358c81b6d103dee27e875228a32494e40790449d60aa719d0d9d0a
|
3 |
+
size 9262024175
|
pytorch_model-00016-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c23ec06c1e4079a288f04d9182a31c53bf09cccf5bef8bad249ce1bbb40c671
|
3 |
+
size 9891189603
|
pytorch_model-00017-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2be582fe182b80f9943d9c271377654c3c401158c302a99cb6da67afd66497b5
|
3 |
+
size 9471759795
|
pytorch_model-00018-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:121011d9c151b31a303dec52d929f9f7072c318ef3ed405caeaaee8b95b4f34d
|
3 |
+
size 9253654627
|
pytorch_model-00019-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf41a8c67f850478de690fda435ed8ad49cda96b95854dc241bb876234bc0cb6
|
3 |
+
size 9262024175
|
pytorch_model-00020-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39d64a3505241ca634d82330a9208d95dcb65e499894c3dd857b09394c3b4995
|
3 |
+
size 9891189603
|
pytorch_model-00021-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b93ce871a511a23158e20decee9164981db9bb2c8aa82bcc8a17e21e775880e1
|
3 |
+
size 9471759795
|
pytorch_model-00022-of-00022.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6060cef05f3a10c6395ed8668f0dd3004eb4964df1791c4f6273187f28fe0cae
|
3 |
+
size 5042094403
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,1131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 204074229920
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00001-of-00022.bin",
|
7 |
+
"transformer.h.0.attn.bias": "pytorch_model-00001-of-00022.bin",
|
8 |
+
"transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
|
9 |
+
"transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
|
10 |
+
"transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
11 |
+
"transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
12 |
+
"transformer.h.0.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
|
13 |
+
"transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00022.bin",
|
14 |
+
"transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00022.bin",
|
15 |
+
"transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00022.bin",
|
16 |
+
"transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00022.bin",
|
17 |
+
"transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
|
18 |
+
"transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
|
19 |
+
"transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
20 |
+
"transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
21 |
+
"transformer.h.1.attn.bias": "pytorch_model-00001-of-00022.bin",
|
22 |
+
"transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
|
23 |
+
"transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
|
24 |
+
"transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
25 |
+
"transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
26 |
+
"transformer.h.1.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
|
27 |
+
"transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00022.bin",
|
28 |
+
"transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00022.bin",
|
29 |
+
"transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00022.bin",
|
30 |
+
"transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00022.bin",
|
31 |
+
"transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
|
32 |
+
"transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
|
33 |
+
"transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
34 |
+
"transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
35 |
+
"transformer.h.10.attn.bias": "pytorch_model-00003-of-00022.bin",
|
36 |
+
"transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
|
37 |
+
"transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
|
38 |
+
"transformer.h.10.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
39 |
+
"transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
40 |
+
"transformer.h.10.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
|
41 |
+
"transformer.h.10.ln_1.bias": "pytorch_model-00003-of-00022.bin",
|
42 |
+
"transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00022.bin",
|
43 |
+
"transformer.h.10.ln_2.bias": "pytorch_model-00003-of-00022.bin",
|
44 |
+
"transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00022.bin",
|
45 |
+
"transformer.h.10.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
|
46 |
+
"transformer.h.10.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
|
47 |
+
"transformer.h.10.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
48 |
+
"transformer.h.10.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
49 |
+
"transformer.h.11.attn.bias": "pytorch_model-00004-of-00022.bin",
|
50 |
+
"transformer.h.11.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
|
51 |
+
"transformer.h.11.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
|
52 |
+
"transformer.h.11.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
53 |
+
"transformer.h.11.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
54 |
+
"transformer.h.11.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
|
55 |
+
"transformer.h.11.ln_1.bias": "pytorch_model-00004-of-00022.bin",
|
56 |
+
"transformer.h.11.ln_1.weight": "pytorch_model-00004-of-00022.bin",
|
57 |
+
"transformer.h.11.ln_2.bias": "pytorch_model-00004-of-00022.bin",
|
58 |
+
"transformer.h.11.ln_2.weight": "pytorch_model-00004-of-00022.bin",
|
59 |
+
"transformer.h.11.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
|
60 |
+
"transformer.h.11.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
|
61 |
+
"transformer.h.11.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
62 |
+
"transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
63 |
+
"transformer.h.12.attn.bias": "pytorch_model-00004-of-00022.bin",
|
64 |
+
"transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
|
65 |
+
"transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
|
66 |
+
"transformer.h.12.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
67 |
+
"transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
68 |
+
"transformer.h.12.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
|
69 |
+
"transformer.h.12.ln_1.bias": "pytorch_model-00004-of-00022.bin",
|
70 |
+
"transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00022.bin",
|
71 |
+
"transformer.h.12.ln_2.bias": "pytorch_model-00004-of-00022.bin",
|
72 |
+
"transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00022.bin",
|
73 |
+
"transformer.h.12.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
|
74 |
+
"transformer.h.12.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
|
75 |
+
"transformer.h.12.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
76 |
+
"transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
77 |
+
"transformer.h.13.attn.bias": "pytorch_model-00004-of-00022.bin",
|
78 |
+
"transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
|
79 |
+
"transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
|
80 |
+
"transformer.h.13.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
81 |
+
"transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
82 |
+
"transformer.h.13.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
|
83 |
+
"transformer.h.13.ln_1.bias": "pytorch_model-00004-of-00022.bin",
|
84 |
+
"transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00022.bin",
|
85 |
+
"transformer.h.13.ln_2.bias": "pytorch_model-00004-of-00022.bin",
|
86 |
+
"transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00022.bin",
|
87 |
+
"transformer.h.13.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
|
88 |
+
"transformer.h.13.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
|
89 |
+
"transformer.h.13.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
|
90 |
+
"transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
|
91 |
+
"transformer.h.14.attn.bias": "pytorch_model-00004-of-00022.bin",
|
92 |
+
"transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
|
93 |
+
"transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
|
94 |
+
"transformer.h.14.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
95 |
+
"transformer.h.14.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
96 |
+
"transformer.h.14.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
|
97 |
+
"transformer.h.14.ln_1.bias": "pytorch_model-00004-of-00022.bin",
|
98 |
+
"transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00022.bin",
|
99 |
+
"transformer.h.14.ln_2.bias": "pytorch_model-00005-of-00022.bin",
|
100 |
+
"transformer.h.14.ln_2.weight": "pytorch_model-00005-of-00022.bin",
|
101 |
+
"transformer.h.14.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
|
102 |
+
"transformer.h.14.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
|
103 |
+
"transformer.h.14.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
104 |
+
"transformer.h.14.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
105 |
+
"transformer.h.15.attn.bias": "pytorch_model-00005-of-00022.bin",
|
106 |
+
"transformer.h.15.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
|
107 |
+
"transformer.h.15.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
|
108 |
+
"transformer.h.15.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
109 |
+
"transformer.h.15.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
110 |
+
"transformer.h.15.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
|
111 |
+
"transformer.h.15.ln_1.bias": "pytorch_model-00005-of-00022.bin",
|
112 |
+
"transformer.h.15.ln_1.weight": "pytorch_model-00005-of-00022.bin",
|
113 |
+
"transformer.h.15.ln_2.bias": "pytorch_model-00005-of-00022.bin",
|
114 |
+
"transformer.h.15.ln_2.weight": "pytorch_model-00005-of-00022.bin",
|
115 |
+
"transformer.h.15.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
|
116 |
+
"transformer.h.15.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
|
117 |
+
"transformer.h.15.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
118 |
+
"transformer.h.15.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
119 |
+
"transformer.h.16.attn.bias": "pytorch_model-00005-of-00022.bin",
|
120 |
+
"transformer.h.16.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
|
121 |
+
"transformer.h.16.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
|
122 |
+
"transformer.h.16.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
123 |
+
"transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
124 |
+
"transformer.h.16.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
|
125 |
+
"transformer.h.16.ln_1.bias": "pytorch_model-00005-of-00022.bin",
|
126 |
+
"transformer.h.16.ln_1.weight": "pytorch_model-00005-of-00022.bin",
|
127 |
+
"transformer.h.16.ln_2.bias": "pytorch_model-00005-of-00022.bin",
|
128 |
+
"transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00022.bin",
|
129 |
+
"transformer.h.16.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
|
130 |
+
"transformer.h.16.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
|
131 |
+
"transformer.h.16.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
132 |
+
"transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
133 |
+
"transformer.h.17.attn.bias": "pytorch_model-00005-of-00022.bin",
|
134 |
+
"transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
|
135 |
+
"transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
|
136 |
+
"transformer.h.17.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
137 |
+
"transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
138 |
+
"transformer.h.17.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
|
139 |
+
"transformer.h.17.ln_1.bias": "pytorch_model-00005-of-00022.bin",
|
140 |
+
"transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00022.bin",
|
141 |
+
"transformer.h.17.ln_2.bias": "pytorch_model-00005-of-00022.bin",
|
142 |
+
"transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00022.bin",
|
143 |
+
"transformer.h.17.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
|
144 |
+
"transformer.h.17.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
|
145 |
+
"transformer.h.17.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
|
146 |
+
"transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
|
147 |
+
"transformer.h.18.attn.bias": "pytorch_model-00005-of-00022.bin",
|
148 |
+
"transformer.h.18.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
|
149 |
+
"transformer.h.18.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
|
150 |
+
"transformer.h.18.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
151 |
+
"transformer.h.18.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
152 |
+
"transformer.h.18.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
|
153 |
+
"transformer.h.18.ln_1.bias": "pytorch_model-00005-of-00022.bin",
|
154 |
+
"transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00022.bin",
|
155 |
+
"transformer.h.18.ln_2.bias": "pytorch_model-00006-of-00022.bin",
|
156 |
+
"transformer.h.18.ln_2.weight": "pytorch_model-00006-of-00022.bin",
|
157 |
+
"transformer.h.18.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
|
158 |
+
"transformer.h.18.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
|
159 |
+
"transformer.h.18.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
160 |
+
"transformer.h.18.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
161 |
+
"transformer.h.19.attn.bias": "pytorch_model-00006-of-00022.bin",
|
162 |
+
"transformer.h.19.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
|
163 |
+
"transformer.h.19.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
|
164 |
+
"transformer.h.19.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
165 |
+
"transformer.h.19.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
166 |
+
"transformer.h.19.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
|
167 |
+
"transformer.h.19.ln_1.bias": "pytorch_model-00006-of-00022.bin",
|
168 |
+
"transformer.h.19.ln_1.weight": "pytorch_model-00006-of-00022.bin",
|
169 |
+
"transformer.h.19.ln_2.bias": "pytorch_model-00006-of-00022.bin",
|
170 |
+
"transformer.h.19.ln_2.weight": "pytorch_model-00006-of-00022.bin",
|
171 |
+
"transformer.h.19.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
|
172 |
+
"transformer.h.19.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
|
173 |
+
"transformer.h.19.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
174 |
+
"transformer.h.19.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
175 |
+
"transformer.h.2.attn.bias": "pytorch_model-00001-of-00022.bin",
|
176 |
+
"transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
|
177 |
+
"transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
|
178 |
+
"transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
179 |
+
"transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
180 |
+
"transformer.h.2.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
|
181 |
+
"transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00022.bin",
|
182 |
+
"transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00022.bin",
|
183 |
+
"transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00022.bin",
|
184 |
+
"transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00022.bin",
|
185 |
+
"transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
|
186 |
+
"transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
|
187 |
+
"transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
|
188 |
+
"transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
|
189 |
+
"transformer.h.20.attn.bias": "pytorch_model-00006-of-00022.bin",
|
190 |
+
"transformer.h.20.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
|
191 |
+
"transformer.h.20.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
|
192 |
+
"transformer.h.20.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
193 |
+
"transformer.h.20.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
194 |
+
"transformer.h.20.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
|
195 |
+
"transformer.h.20.ln_1.bias": "pytorch_model-00006-of-00022.bin",
|
196 |
+
"transformer.h.20.ln_1.weight": "pytorch_model-00006-of-00022.bin",
|
197 |
+
"transformer.h.20.ln_2.bias": "pytorch_model-00006-of-00022.bin",
|
198 |
+
"transformer.h.20.ln_2.weight": "pytorch_model-00006-of-00022.bin",
|
199 |
+
"transformer.h.20.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
|
200 |
+
"transformer.h.20.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
|
201 |
+
"transformer.h.20.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
202 |
+
"transformer.h.20.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
203 |
+
"transformer.h.21.attn.bias": "pytorch_model-00006-of-00022.bin",
|
204 |
+
"transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
|
205 |
+
"transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
|
206 |
+
"transformer.h.21.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
|
207 |
+
"transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
|
208 |
+
"transformer.h.21.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
|
209 |
+
"transformer.h.21.ln_1.bias": "pytorch_model-00006-of-00022.bin",
|
210 |
+
"transformer.h.21.ln_1.weight": "pytorch_model-00006-of-00022.bin",
|
211 |
+
"transformer.h.21.ln_2.bias": "pytorch_model-00006-of-00022.bin",
|
212 |
+
"transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00022.bin",
|
213 |
+
"transformer.h.21.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
|
214 |
+
"transformer.h.21.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
|
215 |
+
"transformer.h.21.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
216 |
+
"transformer.h.21.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
217 |
+
"transformer.h.22.attn.bias": "pytorch_model-00007-of-00022.bin",
|
218 |
+
"transformer.h.22.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
|
219 |
+
"transformer.h.22.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
|
220 |
+
"transformer.h.22.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
221 |
+
"transformer.h.22.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
222 |
+
"transformer.h.22.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
|
223 |
+
"transformer.h.22.ln_1.bias": "pytorch_model-00007-of-00022.bin",
|
224 |
+
"transformer.h.22.ln_1.weight": "pytorch_model-00007-of-00022.bin",
|
225 |
+
"transformer.h.22.ln_2.bias": "pytorch_model-00007-of-00022.bin",
|
226 |
+
"transformer.h.22.ln_2.weight": "pytorch_model-00007-of-00022.bin",
|
227 |
+
"transformer.h.22.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
|
228 |
+
"transformer.h.22.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
|
229 |
+
"transformer.h.22.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
230 |
+
"transformer.h.22.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
231 |
+
"transformer.h.23.attn.bias": "pytorch_model-00007-of-00022.bin",
|
232 |
+
"transformer.h.23.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
|
233 |
+
"transformer.h.23.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
|
234 |
+
"transformer.h.23.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
235 |
+
"transformer.h.23.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
236 |
+
"transformer.h.23.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
|
237 |
+
"transformer.h.23.ln_1.bias": "pytorch_model-00007-of-00022.bin",
|
238 |
+
"transformer.h.23.ln_1.weight": "pytorch_model-00007-of-00022.bin",
|
239 |
+
"transformer.h.23.ln_2.bias": "pytorch_model-00007-of-00022.bin",
|
240 |
+
"transformer.h.23.ln_2.weight": "pytorch_model-00007-of-00022.bin",
|
241 |
+
"transformer.h.23.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
|
242 |
+
"transformer.h.23.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
|
243 |
+
"transformer.h.23.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
244 |
+
"transformer.h.23.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
245 |
+
"transformer.h.24.attn.bias": "pytorch_model-00007-of-00022.bin",
|
246 |
+
"transformer.h.24.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
|
247 |
+
"transformer.h.24.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
|
248 |
+
"transformer.h.24.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
249 |
+
"transformer.h.24.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
250 |
+
"transformer.h.24.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
|
251 |
+
"transformer.h.24.ln_1.bias": "pytorch_model-00007-of-00022.bin",
|
252 |
+
"transformer.h.24.ln_1.weight": "pytorch_model-00007-of-00022.bin",
|
253 |
+
"transformer.h.24.ln_2.bias": "pytorch_model-00007-of-00022.bin",
|
254 |
+
"transformer.h.24.ln_2.weight": "pytorch_model-00007-of-00022.bin",
|
255 |
+
"transformer.h.24.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
|
256 |
+
"transformer.h.24.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
|
257 |
+
"transformer.h.24.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
258 |
+
"transformer.h.24.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
259 |
+
"transformer.h.25.attn.bias": "pytorch_model-00007-of-00022.bin",
|
260 |
+
"transformer.h.25.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
|
261 |
+
"transformer.h.25.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
|
262 |
+
"transformer.h.25.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
|
263 |
+
"transformer.h.25.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
|
264 |
+
"transformer.h.25.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
|
265 |
+
"transformer.h.25.ln_1.bias": "pytorch_model-00007-of-00022.bin",
|
266 |
+
"transformer.h.25.ln_1.weight": "pytorch_model-00007-of-00022.bin",
|
267 |
+
"transformer.h.25.ln_2.bias": "pytorch_model-00007-of-00022.bin",
|
268 |
+
"transformer.h.25.ln_2.weight": "pytorch_model-00007-of-00022.bin",
|
269 |
+
"transformer.h.25.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
|
270 |
+
"transformer.h.25.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
|
271 |
+
"transformer.h.25.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
272 |
+
"transformer.h.25.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
273 |
+
"transformer.h.26.attn.bias": "pytorch_model-00008-of-00022.bin",
|
274 |
+
"transformer.h.26.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
|
275 |
+
"transformer.h.26.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
|
276 |
+
"transformer.h.26.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
277 |
+
"transformer.h.26.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
278 |
+
"transformer.h.26.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
|
279 |
+
"transformer.h.26.ln_1.bias": "pytorch_model-00008-of-00022.bin",
|
280 |
+
"transformer.h.26.ln_1.weight": "pytorch_model-00008-of-00022.bin",
|
281 |
+
"transformer.h.26.ln_2.bias": "pytorch_model-00008-of-00022.bin",
|
282 |
+
"transformer.h.26.ln_2.weight": "pytorch_model-00008-of-00022.bin",
|
283 |
+
"transformer.h.26.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
|
284 |
+
"transformer.h.26.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
|
285 |
+
"transformer.h.26.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
286 |
+
"transformer.h.26.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
287 |
+
"transformer.h.27.attn.bias": "pytorch_model-00008-of-00022.bin",
|
288 |
+
"transformer.h.27.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
|
289 |
+
"transformer.h.27.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
|
290 |
+
"transformer.h.27.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
291 |
+
"transformer.h.27.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
292 |
+
"transformer.h.27.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
|
293 |
+
"transformer.h.27.ln_1.bias": "pytorch_model-00008-of-00022.bin",
|
294 |
+
"transformer.h.27.ln_1.weight": "pytorch_model-00008-of-00022.bin",
|
295 |
+
"transformer.h.27.ln_2.bias": "pytorch_model-00008-of-00022.bin",
|
296 |
+
"transformer.h.27.ln_2.weight": "pytorch_model-00008-of-00022.bin",
|
297 |
+
"transformer.h.27.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
|
298 |
+
"transformer.h.27.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
|
299 |
+
"transformer.h.27.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
300 |
+
"transformer.h.27.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
301 |
+
"transformer.h.28.attn.bias": "pytorch_model-00008-of-00022.bin",
|
302 |
+
"transformer.h.28.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
|
303 |
+
"transformer.h.28.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
|
304 |
+
"transformer.h.28.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
305 |
+
"transformer.h.28.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
306 |
+
"transformer.h.28.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
|
307 |
+
"transformer.h.28.ln_1.bias": "pytorch_model-00008-of-00022.bin",
|
308 |
+
"transformer.h.28.ln_1.weight": "pytorch_model-00008-of-00022.bin",
|
309 |
+
"transformer.h.28.ln_2.bias": "pytorch_model-00008-of-00022.bin",
|
310 |
+
"transformer.h.28.ln_2.weight": "pytorch_model-00008-of-00022.bin",
|
311 |
+
"transformer.h.28.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
|
312 |
+
"transformer.h.28.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
|
313 |
+
"transformer.h.28.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
|
314 |
+
"transformer.h.28.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
|
315 |
+
"transformer.h.29.attn.bias": "pytorch_model-00008-of-00022.bin",
|
316 |
+
"transformer.h.29.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
|
317 |
+
"transformer.h.29.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
|
318 |
+
"transformer.h.29.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
319 |
+
"transformer.h.29.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
320 |
+
"transformer.h.29.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
|
321 |
+
"transformer.h.29.ln_1.bias": "pytorch_model-00008-of-00022.bin",
|
322 |
+
"transformer.h.29.ln_1.weight": "pytorch_model-00008-of-00022.bin",
|
323 |
+
"transformer.h.29.ln_2.bias": "pytorch_model-00009-of-00022.bin",
|
324 |
+
"transformer.h.29.ln_2.weight": "pytorch_model-00009-of-00022.bin",
|
325 |
+
"transformer.h.29.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
|
326 |
+
"transformer.h.29.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
|
327 |
+
"transformer.h.29.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
328 |
+
"transformer.h.29.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
329 |
+
"transformer.h.3.attn.bias": "pytorch_model-00001-of-00022.bin",
|
330 |
+
"transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
|
331 |
+
"transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
|
332 |
+
"transformer.h.3.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
333 |
+
"transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
334 |
+
"transformer.h.3.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
|
335 |
+
"transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00022.bin",
|
336 |
+
"transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00022.bin",
|
337 |
+
"transformer.h.3.ln_2.bias": "pytorch_model-00002-of-00022.bin",
|
338 |
+
"transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00022.bin",
|
339 |
+
"transformer.h.3.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
|
340 |
+
"transformer.h.3.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
|
341 |
+
"transformer.h.3.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
342 |
+
"transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
343 |
+
"transformer.h.30.attn.bias": "pytorch_model-00009-of-00022.bin",
|
344 |
+
"transformer.h.30.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
|
345 |
+
"transformer.h.30.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
|
346 |
+
"transformer.h.30.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
347 |
+
"transformer.h.30.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
348 |
+
"transformer.h.30.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
|
349 |
+
"transformer.h.30.ln_1.bias": "pytorch_model-00009-of-00022.bin",
|
350 |
+
"transformer.h.30.ln_1.weight": "pytorch_model-00009-of-00022.bin",
|
351 |
+
"transformer.h.30.ln_2.bias": "pytorch_model-00009-of-00022.bin",
|
352 |
+
"transformer.h.30.ln_2.weight": "pytorch_model-00009-of-00022.bin",
|
353 |
+
"transformer.h.30.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
|
354 |
+
"transformer.h.30.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
|
355 |
+
"transformer.h.30.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
356 |
+
"transformer.h.30.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
357 |
+
"transformer.h.31.attn.bias": "pytorch_model-00009-of-00022.bin",
|
358 |
+
"transformer.h.31.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
|
359 |
+
"transformer.h.31.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
|
360 |
+
"transformer.h.31.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
361 |
+
"transformer.h.31.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
362 |
+
"transformer.h.31.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
|
363 |
+
"transformer.h.31.ln_1.bias": "pytorch_model-00009-of-00022.bin",
|
364 |
+
"transformer.h.31.ln_1.weight": "pytorch_model-00009-of-00022.bin",
|
365 |
+
"transformer.h.31.ln_2.bias": "pytorch_model-00009-of-00022.bin",
|
366 |
+
"transformer.h.31.ln_2.weight": "pytorch_model-00009-of-00022.bin",
|
367 |
+
"transformer.h.31.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
|
368 |
+
"transformer.h.31.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
|
369 |
+
"transformer.h.31.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
370 |
+
"transformer.h.31.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
371 |
+
"transformer.h.32.attn.bias": "pytorch_model-00009-of-00022.bin",
|
372 |
+
"transformer.h.32.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
|
373 |
+
"transformer.h.32.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
|
374 |
+
"transformer.h.32.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
375 |
+
"transformer.h.32.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
376 |
+
"transformer.h.32.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
|
377 |
+
"transformer.h.32.ln_1.bias": "pytorch_model-00009-of-00022.bin",
|
378 |
+
"transformer.h.32.ln_1.weight": "pytorch_model-00009-of-00022.bin",
|
379 |
+
"transformer.h.32.ln_2.bias": "pytorch_model-00009-of-00022.bin",
|
380 |
+
"transformer.h.32.ln_2.weight": "pytorch_model-00009-of-00022.bin",
|
381 |
+
"transformer.h.32.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
|
382 |
+
"transformer.h.32.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
|
383 |
+
"transformer.h.32.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
|
384 |
+
"transformer.h.32.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
|
385 |
+
"transformer.h.33.attn.bias": "pytorch_model-00009-of-00022.bin",
|
386 |
+
"transformer.h.33.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
|
387 |
+
"transformer.h.33.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
|
388 |
+
"transformer.h.33.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
389 |
+
"transformer.h.33.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
390 |
+
"transformer.h.33.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
|
391 |
+
"transformer.h.33.ln_1.bias": "pytorch_model-00009-of-00022.bin",
|
392 |
+
"transformer.h.33.ln_1.weight": "pytorch_model-00009-of-00022.bin",
|
393 |
+
"transformer.h.33.ln_2.bias": "pytorch_model-00010-of-00022.bin",
|
394 |
+
"transformer.h.33.ln_2.weight": "pytorch_model-00010-of-00022.bin",
|
395 |
+
"transformer.h.33.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
|
396 |
+
"transformer.h.33.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
|
397 |
+
"transformer.h.33.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
398 |
+
"transformer.h.33.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
399 |
+
"transformer.h.34.attn.bias": "pytorch_model-00010-of-00022.bin",
|
400 |
+
"transformer.h.34.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
|
401 |
+
"transformer.h.34.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
|
402 |
+
"transformer.h.34.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
403 |
+
"transformer.h.34.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
404 |
+
"transformer.h.34.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
|
405 |
+
"transformer.h.34.ln_1.bias": "pytorch_model-00010-of-00022.bin",
|
406 |
+
"transformer.h.34.ln_1.weight": "pytorch_model-00010-of-00022.bin",
|
407 |
+
"transformer.h.34.ln_2.bias": "pytorch_model-00010-of-00022.bin",
|
408 |
+
"transformer.h.34.ln_2.weight": "pytorch_model-00010-of-00022.bin",
|
409 |
+
"transformer.h.34.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
|
410 |
+
"transformer.h.34.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
|
411 |
+
"transformer.h.34.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
412 |
+
"transformer.h.34.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
413 |
+
"transformer.h.35.attn.bias": "pytorch_model-00010-of-00022.bin",
|
414 |
+
"transformer.h.35.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
|
415 |
+
"transformer.h.35.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
|
416 |
+
"transformer.h.35.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
417 |
+
"transformer.h.35.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
418 |
+
"transformer.h.35.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
|
419 |
+
"transformer.h.35.ln_1.bias": "pytorch_model-00010-of-00022.bin",
|
420 |
+
"transformer.h.35.ln_1.weight": "pytorch_model-00010-of-00022.bin",
|
421 |
+
"transformer.h.35.ln_2.bias": "pytorch_model-00010-of-00022.bin",
|
422 |
+
"transformer.h.35.ln_2.weight": "pytorch_model-00010-of-00022.bin",
|
423 |
+
"transformer.h.35.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
|
424 |
+
"transformer.h.35.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
|
425 |
+
"transformer.h.35.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
426 |
+
"transformer.h.35.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
427 |
+
"transformer.h.36.attn.bias": "pytorch_model-00010-of-00022.bin",
|
428 |
+
"transformer.h.36.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
|
429 |
+
"transformer.h.36.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
|
430 |
+
"transformer.h.36.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
|
431 |
+
"transformer.h.36.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
|
432 |
+
"transformer.h.36.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
|
433 |
+
"transformer.h.36.ln_1.bias": "pytorch_model-00010-of-00022.bin",
|
434 |
+
"transformer.h.36.ln_1.weight": "pytorch_model-00010-of-00022.bin",
|
435 |
+
"transformer.h.36.ln_2.bias": "pytorch_model-00010-of-00022.bin",
|
436 |
+
"transformer.h.36.ln_2.weight": "pytorch_model-00010-of-00022.bin",
|
437 |
+
"transformer.h.36.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
|
438 |
+
"transformer.h.36.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
|
439 |
+
"transformer.h.36.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
440 |
+
"transformer.h.36.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
441 |
+
"transformer.h.37.attn.bias": "pytorch_model-00011-of-00022.bin",
|
442 |
+
"transformer.h.37.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
|
443 |
+
"transformer.h.37.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
|
444 |
+
"transformer.h.37.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
445 |
+
"transformer.h.37.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
446 |
+
"transformer.h.37.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
|
447 |
+
"transformer.h.37.ln_1.bias": "pytorch_model-00011-of-00022.bin",
|
448 |
+
"transformer.h.37.ln_1.weight": "pytorch_model-00011-of-00022.bin",
|
449 |
+
"transformer.h.37.ln_2.bias": "pytorch_model-00011-of-00022.bin",
|
450 |
+
"transformer.h.37.ln_2.weight": "pytorch_model-00011-of-00022.bin",
|
451 |
+
"transformer.h.37.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
|
452 |
+
"transformer.h.37.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
|
453 |
+
"transformer.h.37.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
454 |
+
"transformer.h.37.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
455 |
+
"transformer.h.38.attn.bias": "pytorch_model-00011-of-00022.bin",
|
456 |
+
"transformer.h.38.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
|
457 |
+
"transformer.h.38.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
|
458 |
+
"transformer.h.38.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
459 |
+
"transformer.h.38.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
460 |
+
"transformer.h.38.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
|
461 |
+
"transformer.h.38.ln_1.bias": "pytorch_model-00011-of-00022.bin",
|
462 |
+
"transformer.h.38.ln_1.weight": "pytorch_model-00011-of-00022.bin",
|
463 |
+
"transformer.h.38.ln_2.bias": "pytorch_model-00011-of-00022.bin",
|
464 |
+
"transformer.h.38.ln_2.weight": "pytorch_model-00011-of-00022.bin",
|
465 |
+
"transformer.h.38.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
|
466 |
+
"transformer.h.38.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
|
467 |
+
"transformer.h.38.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
468 |
+
"transformer.h.38.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
469 |
+
"transformer.h.39.attn.bias": "pytorch_model-00011-of-00022.bin",
|
470 |
+
"transformer.h.39.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
|
471 |
+
"transformer.h.39.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
|
472 |
+
"transformer.h.39.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
473 |
+
"transformer.h.39.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
474 |
+
"transformer.h.39.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
|
475 |
+
"transformer.h.39.ln_1.bias": "pytorch_model-00011-of-00022.bin",
|
476 |
+
"transformer.h.39.ln_1.weight": "pytorch_model-00011-of-00022.bin",
|
477 |
+
"transformer.h.39.ln_2.bias": "pytorch_model-00011-of-00022.bin",
|
478 |
+
"transformer.h.39.ln_2.weight": "pytorch_model-00011-of-00022.bin",
|
479 |
+
"transformer.h.39.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
|
480 |
+
"transformer.h.39.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
|
481 |
+
"transformer.h.39.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
482 |
+
"transformer.h.39.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
483 |
+
"transformer.h.4.attn.bias": "pytorch_model-00002-of-00022.bin",
|
484 |
+
"transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
|
485 |
+
"transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
|
486 |
+
"transformer.h.4.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
487 |
+
"transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
488 |
+
"transformer.h.4.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
|
489 |
+
"transformer.h.4.ln_1.bias": "pytorch_model-00002-of-00022.bin",
|
490 |
+
"transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00022.bin",
|
491 |
+
"transformer.h.4.ln_2.bias": "pytorch_model-00002-of-00022.bin",
|
492 |
+
"transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00022.bin",
|
493 |
+
"transformer.h.4.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
|
494 |
+
"transformer.h.4.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
|
495 |
+
"transformer.h.4.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
496 |
+
"transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
497 |
+
"transformer.h.40.attn.bias": "pytorch_model-00011-of-00022.bin",
|
498 |
+
"transformer.h.40.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
|
499 |
+
"transformer.h.40.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
|
500 |
+
"transformer.h.40.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
|
501 |
+
"transformer.h.40.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
|
502 |
+
"transformer.h.40.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
|
503 |
+
"transformer.h.40.ln_1.bias": "pytorch_model-00011-of-00022.bin",
|
504 |
+
"transformer.h.40.ln_1.weight": "pytorch_model-00011-of-00022.bin",
|
505 |
+
"transformer.h.40.ln_2.bias": "pytorch_model-00011-of-00022.bin",
|
506 |
+
"transformer.h.40.ln_2.weight": "pytorch_model-00011-of-00022.bin",
|
507 |
+
"transformer.h.40.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
|
508 |
+
"transformer.h.40.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
|
509 |
+
"transformer.h.40.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
510 |
+
"transformer.h.40.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
511 |
+
"transformer.h.41.attn.bias": "pytorch_model-00012-of-00022.bin",
|
512 |
+
"transformer.h.41.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
|
513 |
+
"transformer.h.41.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
|
514 |
+
"transformer.h.41.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
515 |
+
"transformer.h.41.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
516 |
+
"transformer.h.41.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
|
517 |
+
"transformer.h.41.ln_1.bias": "pytorch_model-00012-of-00022.bin",
|
518 |
+
"transformer.h.41.ln_1.weight": "pytorch_model-00012-of-00022.bin",
|
519 |
+
"transformer.h.41.ln_2.bias": "pytorch_model-00012-of-00022.bin",
|
520 |
+
"transformer.h.41.ln_2.weight": "pytorch_model-00012-of-00022.bin",
|
521 |
+
"transformer.h.41.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
|
522 |
+
"transformer.h.41.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
|
523 |
+
"transformer.h.41.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
524 |
+
"transformer.h.41.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
525 |
+
"transformer.h.42.attn.bias": "pytorch_model-00012-of-00022.bin",
|
526 |
+
"transformer.h.42.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
|
527 |
+
"transformer.h.42.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
|
528 |
+
"transformer.h.42.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
529 |
+
"transformer.h.42.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
530 |
+
"transformer.h.42.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
|
531 |
+
"transformer.h.42.ln_1.bias": "pytorch_model-00012-of-00022.bin",
|
532 |
+
"transformer.h.42.ln_1.weight": "pytorch_model-00012-of-00022.bin",
|
533 |
+
"transformer.h.42.ln_2.bias": "pytorch_model-00012-of-00022.bin",
|
534 |
+
"transformer.h.42.ln_2.weight": "pytorch_model-00012-of-00022.bin",
|
535 |
+
"transformer.h.42.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
|
536 |
+
"transformer.h.42.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
|
537 |
+
"transformer.h.42.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
538 |
+
"transformer.h.42.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
539 |
+
"transformer.h.43.attn.bias": "pytorch_model-00012-of-00022.bin",
|
540 |
+
"transformer.h.43.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
|
541 |
+
"transformer.h.43.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
|
542 |
+
"transformer.h.43.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
543 |
+
"transformer.h.43.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
544 |
+
"transformer.h.43.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
|
545 |
+
"transformer.h.43.ln_1.bias": "pytorch_model-00012-of-00022.bin",
|
546 |
+
"transformer.h.43.ln_1.weight": "pytorch_model-00012-of-00022.bin",
|
547 |
+
"transformer.h.43.ln_2.bias": "pytorch_model-00012-of-00022.bin",
|
548 |
+
"transformer.h.43.ln_2.weight": "pytorch_model-00012-of-00022.bin",
|
549 |
+
"transformer.h.43.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
|
550 |
+
"transformer.h.43.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
|
551 |
+
"transformer.h.43.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
|
552 |
+
"transformer.h.43.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
|
553 |
+
"transformer.h.44.attn.bias": "pytorch_model-00012-of-00022.bin",
|
554 |
+
"transformer.h.44.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
|
555 |
+
"transformer.h.44.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
|
556 |
+
"transformer.h.44.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
557 |
+
"transformer.h.44.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
558 |
+
"transformer.h.44.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
|
559 |
+
"transformer.h.44.ln_1.bias": "pytorch_model-00012-of-00022.bin",
|
560 |
+
"transformer.h.44.ln_1.weight": "pytorch_model-00012-of-00022.bin",
|
561 |
+
"transformer.h.44.ln_2.bias": "pytorch_model-00013-of-00022.bin",
|
562 |
+
"transformer.h.44.ln_2.weight": "pytorch_model-00013-of-00022.bin",
|
563 |
+
"transformer.h.44.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
|
564 |
+
"transformer.h.44.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
|
565 |
+
"transformer.h.44.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
566 |
+
"transformer.h.44.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
567 |
+
"transformer.h.45.attn.bias": "pytorch_model-00013-of-00022.bin",
|
568 |
+
"transformer.h.45.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
|
569 |
+
"transformer.h.45.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
|
570 |
+
"transformer.h.45.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
571 |
+
"transformer.h.45.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
572 |
+
"transformer.h.45.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
|
573 |
+
"transformer.h.45.ln_1.bias": "pytorch_model-00013-of-00022.bin",
|
574 |
+
"transformer.h.45.ln_1.weight": "pytorch_model-00013-of-00022.bin",
|
575 |
+
"transformer.h.45.ln_2.bias": "pytorch_model-00013-of-00022.bin",
|
576 |
+
"transformer.h.45.ln_2.weight": "pytorch_model-00013-of-00022.bin",
|
577 |
+
"transformer.h.45.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
|
578 |
+
"transformer.h.45.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
|
579 |
+
"transformer.h.45.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
580 |
+
"transformer.h.45.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
581 |
+
"transformer.h.46.attn.bias": "pytorch_model-00013-of-00022.bin",
|
582 |
+
"transformer.h.46.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
|
583 |
+
"transformer.h.46.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
|
584 |
+
"transformer.h.46.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
585 |
+
"transformer.h.46.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
586 |
+
"transformer.h.46.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
|
587 |
+
"transformer.h.46.ln_1.bias": "pytorch_model-00013-of-00022.bin",
|
588 |
+
"transformer.h.46.ln_1.weight": "pytorch_model-00013-of-00022.bin",
|
589 |
+
"transformer.h.46.ln_2.bias": "pytorch_model-00013-of-00022.bin",
|
590 |
+
"transformer.h.46.ln_2.weight": "pytorch_model-00013-of-00022.bin",
|
591 |
+
"transformer.h.46.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
|
592 |
+
"transformer.h.46.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
|
593 |
+
"transformer.h.46.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
594 |
+
"transformer.h.46.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
595 |
+
"transformer.h.47.attn.bias": "pytorch_model-00013-of-00022.bin",
|
596 |
+
"transformer.h.47.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
|
597 |
+
"transformer.h.47.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
|
598 |
+
"transformer.h.47.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
599 |
+
"transformer.h.47.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
600 |
+
"transformer.h.47.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
|
601 |
+
"transformer.h.47.ln_1.bias": "pytorch_model-00013-of-00022.bin",
|
602 |
+
"transformer.h.47.ln_1.weight": "pytorch_model-00013-of-00022.bin",
|
603 |
+
"transformer.h.47.ln_2.bias": "pytorch_model-00013-of-00022.bin",
|
604 |
+
"transformer.h.47.ln_2.weight": "pytorch_model-00013-of-00022.bin",
|
605 |
+
"transformer.h.47.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
|
606 |
+
"transformer.h.47.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
|
607 |
+
"transformer.h.47.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
|
608 |
+
"transformer.h.47.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
|
609 |
+
"transformer.h.48.attn.bias": "pytorch_model-00013-of-00022.bin",
|
610 |
+
"transformer.h.48.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
|
611 |
+
"transformer.h.48.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
|
612 |
+
"transformer.h.48.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
613 |
+
"transformer.h.48.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
614 |
+
"transformer.h.48.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
|
615 |
+
"transformer.h.48.ln_1.bias": "pytorch_model-00013-of-00022.bin",
|
616 |
+
"transformer.h.48.ln_1.weight": "pytorch_model-00013-of-00022.bin",
|
617 |
+
"transformer.h.48.ln_2.bias": "pytorch_model-00014-of-00022.bin",
|
618 |
+
"transformer.h.48.ln_2.weight": "pytorch_model-00014-of-00022.bin",
|
619 |
+
"transformer.h.48.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
|
620 |
+
"transformer.h.48.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
|
621 |
+
"transformer.h.48.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
622 |
+
"transformer.h.48.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
623 |
+
"transformer.h.49.attn.bias": "pytorch_model-00014-of-00022.bin",
|
624 |
+
"transformer.h.49.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
|
625 |
+
"transformer.h.49.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
|
626 |
+
"transformer.h.49.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
627 |
+
"transformer.h.49.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
628 |
+
"transformer.h.49.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
|
629 |
+
"transformer.h.49.ln_1.bias": "pytorch_model-00014-of-00022.bin",
|
630 |
+
"transformer.h.49.ln_1.weight": "pytorch_model-00014-of-00022.bin",
|
631 |
+
"transformer.h.49.ln_2.bias": "pytorch_model-00014-of-00022.bin",
|
632 |
+
"transformer.h.49.ln_2.weight": "pytorch_model-00014-of-00022.bin",
|
633 |
+
"transformer.h.49.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
|
634 |
+
"transformer.h.49.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
|
635 |
+
"transformer.h.49.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
636 |
+
"transformer.h.49.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
637 |
+
"transformer.h.5.attn.bias": "pytorch_model-00002-of-00022.bin",
|
638 |
+
"transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
|
639 |
+
"transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
|
640 |
+
"transformer.h.5.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
641 |
+
"transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
642 |
+
"transformer.h.5.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
|
643 |
+
"transformer.h.5.ln_1.bias": "pytorch_model-00002-of-00022.bin",
|
644 |
+
"transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00022.bin",
|
645 |
+
"transformer.h.5.ln_2.bias": "pytorch_model-00002-of-00022.bin",
|
646 |
+
"transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00022.bin",
|
647 |
+
"transformer.h.5.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
|
648 |
+
"transformer.h.5.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
|
649 |
+
"transformer.h.5.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
650 |
+
"transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
651 |
+
"transformer.h.50.attn.bias": "pytorch_model-00014-of-00022.bin",
|
652 |
+
"transformer.h.50.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
|
653 |
+
"transformer.h.50.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
|
654 |
+
"transformer.h.50.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
655 |
+
"transformer.h.50.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
656 |
+
"transformer.h.50.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
|
657 |
+
"transformer.h.50.ln_1.bias": "pytorch_model-00014-of-00022.bin",
|
658 |
+
"transformer.h.50.ln_1.weight": "pytorch_model-00014-of-00022.bin",
|
659 |
+
"transformer.h.50.ln_2.bias": "pytorch_model-00014-of-00022.bin",
|
660 |
+
"transformer.h.50.ln_2.weight": "pytorch_model-00014-of-00022.bin",
|
661 |
+
"transformer.h.50.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
|
662 |
+
"transformer.h.50.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
|
663 |
+
"transformer.h.50.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
664 |
+
"transformer.h.50.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
665 |
+
"transformer.h.51.attn.bias": "pytorch_model-00014-of-00022.bin",
|
666 |
+
"transformer.h.51.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
|
667 |
+
"transformer.h.51.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
|
668 |
+
"transformer.h.51.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
|
669 |
+
"transformer.h.51.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
|
670 |
+
"transformer.h.51.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
|
671 |
+
"transformer.h.51.ln_1.bias": "pytorch_model-00014-of-00022.bin",
|
672 |
+
"transformer.h.51.ln_1.weight": "pytorch_model-00014-of-00022.bin",
|
673 |
+
"transformer.h.51.ln_2.bias": "pytorch_model-00014-of-00022.bin",
|
674 |
+
"transformer.h.51.ln_2.weight": "pytorch_model-00014-of-00022.bin",
|
675 |
+
"transformer.h.51.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
|
676 |
+
"transformer.h.51.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
|
677 |
+
"transformer.h.51.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
678 |
+
"transformer.h.51.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
679 |
+
"transformer.h.52.attn.bias": "pytorch_model-00015-of-00022.bin",
|
680 |
+
"transformer.h.52.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
|
681 |
+
"transformer.h.52.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
|
682 |
+
"transformer.h.52.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
683 |
+
"transformer.h.52.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
684 |
+
"transformer.h.52.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
|
685 |
+
"transformer.h.52.ln_1.bias": "pytorch_model-00015-of-00022.bin",
|
686 |
+
"transformer.h.52.ln_1.weight": "pytorch_model-00015-of-00022.bin",
|
687 |
+
"transformer.h.52.ln_2.bias": "pytorch_model-00015-of-00022.bin",
|
688 |
+
"transformer.h.52.ln_2.weight": "pytorch_model-00015-of-00022.bin",
|
689 |
+
"transformer.h.52.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
|
690 |
+
"transformer.h.52.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
|
691 |
+
"transformer.h.52.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
692 |
+
"transformer.h.52.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
693 |
+
"transformer.h.53.attn.bias": "pytorch_model-00015-of-00022.bin",
|
694 |
+
"transformer.h.53.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
|
695 |
+
"transformer.h.53.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
|
696 |
+
"transformer.h.53.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
697 |
+
"transformer.h.53.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
698 |
+
"transformer.h.53.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
|
699 |
+
"transformer.h.53.ln_1.bias": "pytorch_model-00015-of-00022.bin",
|
700 |
+
"transformer.h.53.ln_1.weight": "pytorch_model-00015-of-00022.bin",
|
701 |
+
"transformer.h.53.ln_2.bias": "pytorch_model-00015-of-00022.bin",
|
702 |
+
"transformer.h.53.ln_2.weight": "pytorch_model-00015-of-00022.bin",
|
703 |
+
"transformer.h.53.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
|
704 |
+
"transformer.h.53.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
|
705 |
+
"transformer.h.53.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
706 |
+
"transformer.h.53.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
707 |
+
"transformer.h.54.attn.bias": "pytorch_model-00015-of-00022.bin",
|
708 |
+
"transformer.h.54.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
|
709 |
+
"transformer.h.54.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
|
710 |
+
"transformer.h.54.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
711 |
+
"transformer.h.54.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
712 |
+
"transformer.h.54.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
|
713 |
+
"transformer.h.54.ln_1.bias": "pytorch_model-00015-of-00022.bin",
|
714 |
+
"transformer.h.54.ln_1.weight": "pytorch_model-00015-of-00022.bin",
|
715 |
+
"transformer.h.54.ln_2.bias": "pytorch_model-00015-of-00022.bin",
|
716 |
+
"transformer.h.54.ln_2.weight": "pytorch_model-00015-of-00022.bin",
|
717 |
+
"transformer.h.54.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
|
718 |
+
"transformer.h.54.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
|
719 |
+
"transformer.h.54.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
720 |
+
"transformer.h.54.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
721 |
+
"transformer.h.55.attn.bias": "pytorch_model-00015-of-00022.bin",
|
722 |
+
"transformer.h.55.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
|
723 |
+
"transformer.h.55.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
|
724 |
+
"transformer.h.55.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
|
725 |
+
"transformer.h.55.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
|
726 |
+
"transformer.h.55.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
|
727 |
+
"transformer.h.55.ln_1.bias": "pytorch_model-00015-of-00022.bin",
|
728 |
+
"transformer.h.55.ln_1.weight": "pytorch_model-00015-of-00022.bin",
|
729 |
+
"transformer.h.55.ln_2.bias": "pytorch_model-00015-of-00022.bin",
|
730 |
+
"transformer.h.55.ln_2.weight": "pytorch_model-00015-of-00022.bin",
|
731 |
+
"transformer.h.55.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
|
732 |
+
"transformer.h.55.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
|
733 |
+
"transformer.h.55.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
734 |
+
"transformer.h.55.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
735 |
+
"transformer.h.56.attn.bias": "pytorch_model-00016-of-00022.bin",
|
736 |
+
"transformer.h.56.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
|
737 |
+
"transformer.h.56.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
|
738 |
+
"transformer.h.56.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
739 |
+
"transformer.h.56.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
740 |
+
"transformer.h.56.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
|
741 |
+
"transformer.h.56.ln_1.bias": "pytorch_model-00016-of-00022.bin",
|
742 |
+
"transformer.h.56.ln_1.weight": "pytorch_model-00016-of-00022.bin",
|
743 |
+
"transformer.h.56.ln_2.bias": "pytorch_model-00016-of-00022.bin",
|
744 |
+
"transformer.h.56.ln_2.weight": "pytorch_model-00016-of-00022.bin",
|
745 |
+
"transformer.h.56.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
|
746 |
+
"transformer.h.56.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
|
747 |
+
"transformer.h.56.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
748 |
+
"transformer.h.56.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
749 |
+
"transformer.h.57.attn.bias": "pytorch_model-00016-of-00022.bin",
|
750 |
+
"transformer.h.57.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
|
751 |
+
"transformer.h.57.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
|
752 |
+
"transformer.h.57.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
753 |
+
"transformer.h.57.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
754 |
+
"transformer.h.57.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
|
755 |
+
"transformer.h.57.ln_1.bias": "pytorch_model-00016-of-00022.bin",
|
756 |
+
"transformer.h.57.ln_1.weight": "pytorch_model-00016-of-00022.bin",
|
757 |
+
"transformer.h.57.ln_2.bias": "pytorch_model-00016-of-00022.bin",
|
758 |
+
"transformer.h.57.ln_2.weight": "pytorch_model-00016-of-00022.bin",
|
759 |
+
"transformer.h.57.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
|
760 |
+
"transformer.h.57.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
|
761 |
+
"transformer.h.57.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
762 |
+
"transformer.h.57.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
763 |
+
"transformer.h.58.attn.bias": "pytorch_model-00016-of-00022.bin",
|
764 |
+
"transformer.h.58.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
|
765 |
+
"transformer.h.58.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
|
766 |
+
"transformer.h.58.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
767 |
+
"transformer.h.58.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
768 |
+
"transformer.h.58.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
|
769 |
+
"transformer.h.58.ln_1.bias": "pytorch_model-00016-of-00022.bin",
|
770 |
+
"transformer.h.58.ln_1.weight": "pytorch_model-00016-of-00022.bin",
|
771 |
+
"transformer.h.58.ln_2.bias": "pytorch_model-00016-of-00022.bin",
|
772 |
+
"transformer.h.58.ln_2.weight": "pytorch_model-00016-of-00022.bin",
|
773 |
+
"transformer.h.58.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
|
774 |
+
"transformer.h.58.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
|
775 |
+
"transformer.h.58.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
|
776 |
+
"transformer.h.58.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
|
777 |
+
"transformer.h.59.attn.bias": "pytorch_model-00016-of-00022.bin",
|
778 |
+
"transformer.h.59.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
|
779 |
+
"transformer.h.59.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
|
780 |
+
"transformer.h.59.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
781 |
+
"transformer.h.59.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
782 |
+
"transformer.h.59.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
|
783 |
+
"transformer.h.59.ln_1.bias": "pytorch_model-00016-of-00022.bin",
|
784 |
+
"transformer.h.59.ln_1.weight": "pytorch_model-00016-of-00022.bin",
|
785 |
+
"transformer.h.59.ln_2.bias": "pytorch_model-00017-of-00022.bin",
|
786 |
+
"transformer.h.59.ln_2.weight": "pytorch_model-00017-of-00022.bin",
|
787 |
+
"transformer.h.59.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
|
788 |
+
"transformer.h.59.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
|
789 |
+
"transformer.h.59.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
790 |
+
"transformer.h.59.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
791 |
+
"transformer.h.6.attn.bias": "pytorch_model-00002-of-00022.bin",
|
792 |
+
"transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
|
793 |
+
"transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
|
794 |
+
"transformer.h.6.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
|
795 |
+
"transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
|
796 |
+
"transformer.h.6.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
|
797 |
+
"transformer.h.6.ln_1.bias": "pytorch_model-00002-of-00022.bin",
|
798 |
+
"transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00022.bin",
|
799 |
+
"transformer.h.6.ln_2.bias": "pytorch_model-00002-of-00022.bin",
|
800 |
+
"transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00022.bin",
|
801 |
+
"transformer.h.6.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
|
802 |
+
"transformer.h.6.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
|
803 |
+
"transformer.h.6.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
804 |
+
"transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
805 |
+
"transformer.h.60.attn.bias": "pytorch_model-00017-of-00022.bin",
|
806 |
+
"transformer.h.60.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
|
807 |
+
"transformer.h.60.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
|
808 |
+
"transformer.h.60.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
809 |
+
"transformer.h.60.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
810 |
+
"transformer.h.60.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
|
811 |
+
"transformer.h.60.ln_1.bias": "pytorch_model-00017-of-00022.bin",
|
812 |
+
"transformer.h.60.ln_1.weight": "pytorch_model-00017-of-00022.bin",
|
813 |
+
"transformer.h.60.ln_2.bias": "pytorch_model-00017-of-00022.bin",
|
814 |
+
"transformer.h.60.ln_2.weight": "pytorch_model-00017-of-00022.bin",
|
815 |
+
"transformer.h.60.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
|
816 |
+
"transformer.h.60.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
|
817 |
+
"transformer.h.60.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
818 |
+
"transformer.h.60.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
819 |
+
"transformer.h.61.attn.bias": "pytorch_model-00017-of-00022.bin",
|
820 |
+
"transformer.h.61.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
|
821 |
+
"transformer.h.61.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
|
822 |
+
"transformer.h.61.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
823 |
+
"transformer.h.61.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
824 |
+
"transformer.h.61.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
|
825 |
+
"transformer.h.61.ln_1.bias": "pytorch_model-00017-of-00022.bin",
|
826 |
+
"transformer.h.61.ln_1.weight": "pytorch_model-00017-of-00022.bin",
|
827 |
+
"transformer.h.61.ln_2.bias": "pytorch_model-00017-of-00022.bin",
|
828 |
+
"transformer.h.61.ln_2.weight": "pytorch_model-00017-of-00022.bin",
|
829 |
+
"transformer.h.61.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
|
830 |
+
"transformer.h.61.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
|
831 |
+
"transformer.h.61.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
832 |
+
"transformer.h.61.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
833 |
+
"transformer.h.62.attn.bias": "pytorch_model-00017-of-00022.bin",
|
834 |
+
"transformer.h.62.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
|
835 |
+
"transformer.h.62.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
|
836 |
+
"transformer.h.62.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
837 |
+
"transformer.h.62.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
838 |
+
"transformer.h.62.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
|
839 |
+
"transformer.h.62.ln_1.bias": "pytorch_model-00017-of-00022.bin",
|
840 |
+
"transformer.h.62.ln_1.weight": "pytorch_model-00017-of-00022.bin",
|
841 |
+
"transformer.h.62.ln_2.bias": "pytorch_model-00017-of-00022.bin",
|
842 |
+
"transformer.h.62.ln_2.weight": "pytorch_model-00017-of-00022.bin",
|
843 |
+
"transformer.h.62.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
|
844 |
+
"transformer.h.62.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
|
845 |
+
"transformer.h.62.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
|
846 |
+
"transformer.h.62.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
|
847 |
+
"transformer.h.63.attn.bias": "pytorch_model-00017-of-00022.bin",
|
848 |
+
"transformer.h.63.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
|
849 |
+
"transformer.h.63.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
|
850 |
+
"transformer.h.63.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
851 |
+
"transformer.h.63.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
852 |
+
"transformer.h.63.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
|
853 |
+
"transformer.h.63.ln_1.bias": "pytorch_model-00017-of-00022.bin",
|
854 |
+
"transformer.h.63.ln_1.weight": "pytorch_model-00017-of-00022.bin",
|
855 |
+
"transformer.h.63.ln_2.bias": "pytorch_model-00018-of-00022.bin",
|
856 |
+
"transformer.h.63.ln_2.weight": "pytorch_model-00018-of-00022.bin",
|
857 |
+
"transformer.h.63.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
|
858 |
+
"transformer.h.63.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
|
859 |
+
"transformer.h.63.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
860 |
+
"transformer.h.63.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
861 |
+
"transformer.h.64.attn.bias": "pytorch_model-00018-of-00022.bin",
|
862 |
+
"transformer.h.64.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
|
863 |
+
"transformer.h.64.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
|
864 |
+
"transformer.h.64.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
865 |
+
"transformer.h.64.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
866 |
+
"transformer.h.64.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
|
867 |
+
"transformer.h.64.ln_1.bias": "pytorch_model-00018-of-00022.bin",
|
868 |
+
"transformer.h.64.ln_1.weight": "pytorch_model-00018-of-00022.bin",
|
869 |
+
"transformer.h.64.ln_2.bias": "pytorch_model-00018-of-00022.bin",
|
870 |
+
"transformer.h.64.ln_2.weight": "pytorch_model-00018-of-00022.bin",
|
871 |
+
"transformer.h.64.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
|
872 |
+
"transformer.h.64.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
|
873 |
+
"transformer.h.64.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
874 |
+
"transformer.h.64.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
875 |
+
"transformer.h.65.attn.bias": "pytorch_model-00018-of-00022.bin",
|
876 |
+
"transformer.h.65.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
|
877 |
+
"transformer.h.65.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
|
878 |
+
"transformer.h.65.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
879 |
+
"transformer.h.65.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
880 |
+
"transformer.h.65.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
|
881 |
+
"transformer.h.65.ln_1.bias": "pytorch_model-00018-of-00022.bin",
|
882 |
+
"transformer.h.65.ln_1.weight": "pytorch_model-00018-of-00022.bin",
|
883 |
+
"transformer.h.65.ln_2.bias": "pytorch_model-00018-of-00022.bin",
|
884 |
+
"transformer.h.65.ln_2.weight": "pytorch_model-00018-of-00022.bin",
|
885 |
+
"transformer.h.65.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
|
886 |
+
"transformer.h.65.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
|
887 |
+
"transformer.h.65.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
888 |
+
"transformer.h.65.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
889 |
+
"transformer.h.66.attn.bias": "pytorch_model-00018-of-00022.bin",
|
890 |
+
"transformer.h.66.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
|
891 |
+
"transformer.h.66.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
|
892 |
+
"transformer.h.66.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
|
893 |
+
"transformer.h.66.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
|
894 |
+
"transformer.h.66.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
|
895 |
+
"transformer.h.66.ln_1.bias": "pytorch_model-00018-of-00022.bin",
|
896 |
+
"transformer.h.66.ln_1.weight": "pytorch_model-00018-of-00022.bin",
|
897 |
+
"transformer.h.66.ln_2.bias": "pytorch_model-00018-of-00022.bin",
|
898 |
+
"transformer.h.66.ln_2.weight": "pytorch_model-00018-of-00022.bin",
|
899 |
+
"transformer.h.66.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
|
900 |
+
"transformer.h.66.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
|
901 |
+
"transformer.h.66.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
902 |
+
"transformer.h.66.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
903 |
+
"transformer.h.67.attn.bias": "pytorch_model-00019-of-00022.bin",
|
904 |
+
"transformer.h.67.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
|
905 |
+
"transformer.h.67.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
|
906 |
+
"transformer.h.67.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
907 |
+
"transformer.h.67.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
908 |
+
"transformer.h.67.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
|
909 |
+
"transformer.h.67.ln_1.bias": "pytorch_model-00019-of-00022.bin",
|
910 |
+
"transformer.h.67.ln_1.weight": "pytorch_model-00019-of-00022.bin",
|
911 |
+
"transformer.h.67.ln_2.bias": "pytorch_model-00019-of-00022.bin",
|
912 |
+
"transformer.h.67.ln_2.weight": "pytorch_model-00019-of-00022.bin",
|
913 |
+
"transformer.h.67.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
|
914 |
+
"transformer.h.67.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
|
915 |
+
"transformer.h.67.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
916 |
+
"transformer.h.67.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
917 |
+
"transformer.h.68.attn.bias": "pytorch_model-00019-of-00022.bin",
|
918 |
+
"transformer.h.68.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
|
919 |
+
"transformer.h.68.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
|
920 |
+
"transformer.h.68.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
921 |
+
"transformer.h.68.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
922 |
+
"transformer.h.68.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
|
923 |
+
"transformer.h.68.ln_1.bias": "pytorch_model-00019-of-00022.bin",
|
924 |
+
"transformer.h.68.ln_1.weight": "pytorch_model-00019-of-00022.bin",
|
925 |
+
"transformer.h.68.ln_2.bias": "pytorch_model-00019-of-00022.bin",
|
926 |
+
"transformer.h.68.ln_2.weight": "pytorch_model-00019-of-00022.bin",
|
927 |
+
"transformer.h.68.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
|
928 |
+
"transformer.h.68.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
|
929 |
+
"transformer.h.68.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
930 |
+
"transformer.h.68.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
931 |
+
"transformer.h.69.attn.bias": "pytorch_model-00019-of-00022.bin",
|
932 |
+
"transformer.h.69.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
|
933 |
+
"transformer.h.69.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
|
934 |
+
"transformer.h.69.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
935 |
+
"transformer.h.69.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
936 |
+
"transformer.h.69.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
|
937 |
+
"transformer.h.69.ln_1.bias": "pytorch_model-00019-of-00022.bin",
|
938 |
+
"transformer.h.69.ln_1.weight": "pytorch_model-00019-of-00022.bin",
|
939 |
+
"transformer.h.69.ln_2.bias": "pytorch_model-00019-of-00022.bin",
|
940 |
+
"transformer.h.69.ln_2.weight": "pytorch_model-00019-of-00022.bin",
|
941 |
+
"transformer.h.69.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
|
942 |
+
"transformer.h.69.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
|
943 |
+
"transformer.h.69.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
944 |
+
"transformer.h.69.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
945 |
+
"transformer.h.7.attn.bias": "pytorch_model-00003-of-00022.bin",
|
946 |
+
"transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
|
947 |
+
"transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
|
948 |
+
"transformer.h.7.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
949 |
+
"transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
950 |
+
"transformer.h.7.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
|
951 |
+
"transformer.h.7.ln_1.bias": "pytorch_model-00003-of-00022.bin",
|
952 |
+
"transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00022.bin",
|
953 |
+
"transformer.h.7.ln_2.bias": "pytorch_model-00003-of-00022.bin",
|
954 |
+
"transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00022.bin",
|
955 |
+
"transformer.h.7.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
|
956 |
+
"transformer.h.7.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
|
957 |
+
"transformer.h.7.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
958 |
+
"transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
959 |
+
"transformer.h.70.attn.bias": "pytorch_model-00019-of-00022.bin",
|
960 |
+
"transformer.h.70.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
|
961 |
+
"transformer.h.70.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
|
962 |
+
"transformer.h.70.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
|
963 |
+
"transformer.h.70.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
|
964 |
+
"transformer.h.70.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
|
965 |
+
"transformer.h.70.ln_1.bias": "pytorch_model-00019-of-00022.bin",
|
966 |
+
"transformer.h.70.ln_1.weight": "pytorch_model-00019-of-00022.bin",
|
967 |
+
"transformer.h.70.ln_2.bias": "pytorch_model-00019-of-00022.bin",
|
968 |
+
"transformer.h.70.ln_2.weight": "pytorch_model-00019-of-00022.bin",
|
969 |
+
"transformer.h.70.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
|
970 |
+
"transformer.h.70.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
|
971 |
+
"transformer.h.70.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
972 |
+
"transformer.h.70.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
973 |
+
"transformer.h.71.attn.bias": "pytorch_model-00020-of-00022.bin",
|
974 |
+
"transformer.h.71.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
|
975 |
+
"transformer.h.71.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
|
976 |
+
"transformer.h.71.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
977 |
+
"transformer.h.71.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
978 |
+
"transformer.h.71.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
|
979 |
+
"transformer.h.71.ln_1.bias": "pytorch_model-00020-of-00022.bin",
|
980 |
+
"transformer.h.71.ln_1.weight": "pytorch_model-00020-of-00022.bin",
|
981 |
+
"transformer.h.71.ln_2.bias": "pytorch_model-00020-of-00022.bin",
|
982 |
+
"transformer.h.71.ln_2.weight": "pytorch_model-00020-of-00022.bin",
|
983 |
+
"transformer.h.71.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
|
984 |
+
"transformer.h.71.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
|
985 |
+
"transformer.h.71.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
986 |
+
"transformer.h.71.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
987 |
+
"transformer.h.72.attn.bias": "pytorch_model-00020-of-00022.bin",
|
988 |
+
"transformer.h.72.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
|
989 |
+
"transformer.h.72.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
|
990 |
+
"transformer.h.72.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
991 |
+
"transformer.h.72.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
992 |
+
"transformer.h.72.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
|
993 |
+
"transformer.h.72.ln_1.bias": "pytorch_model-00020-of-00022.bin",
|
994 |
+
"transformer.h.72.ln_1.weight": "pytorch_model-00020-of-00022.bin",
|
995 |
+
"transformer.h.72.ln_2.bias": "pytorch_model-00020-of-00022.bin",
|
996 |
+
"transformer.h.72.ln_2.weight": "pytorch_model-00020-of-00022.bin",
|
997 |
+
"transformer.h.72.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
|
998 |
+
"transformer.h.72.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
|
999 |
+
"transformer.h.72.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
1000 |
+
"transformer.h.72.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
1001 |
+
"transformer.h.73.attn.bias": "pytorch_model-00020-of-00022.bin",
|
1002 |
+
"transformer.h.73.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
|
1003 |
+
"transformer.h.73.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
|
1004 |
+
"transformer.h.73.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
1005 |
+
"transformer.h.73.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
1006 |
+
"transformer.h.73.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
|
1007 |
+
"transformer.h.73.ln_1.bias": "pytorch_model-00020-of-00022.bin",
|
1008 |
+
"transformer.h.73.ln_1.weight": "pytorch_model-00020-of-00022.bin",
|
1009 |
+
"transformer.h.73.ln_2.bias": "pytorch_model-00020-of-00022.bin",
|
1010 |
+
"transformer.h.73.ln_2.weight": "pytorch_model-00020-of-00022.bin",
|
1011 |
+
"transformer.h.73.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
|
1012 |
+
"transformer.h.73.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
|
1013 |
+
"transformer.h.73.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
|
1014 |
+
"transformer.h.73.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
|
1015 |
+
"transformer.h.74.attn.bias": "pytorch_model-00020-of-00022.bin",
|
1016 |
+
"transformer.h.74.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
|
1017 |
+
"transformer.h.74.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
|
1018 |
+
"transformer.h.74.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1019 |
+
"transformer.h.74.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1020 |
+
"transformer.h.74.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
|
1021 |
+
"transformer.h.74.ln_1.bias": "pytorch_model-00020-of-00022.bin",
|
1022 |
+
"transformer.h.74.ln_1.weight": "pytorch_model-00020-of-00022.bin",
|
1023 |
+
"transformer.h.74.ln_2.bias": "pytorch_model-00021-of-00022.bin",
|
1024 |
+
"transformer.h.74.ln_2.weight": "pytorch_model-00021-of-00022.bin",
|
1025 |
+
"transformer.h.74.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
|
1026 |
+
"transformer.h.74.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
|
1027 |
+
"transformer.h.74.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1028 |
+
"transformer.h.74.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1029 |
+
"transformer.h.75.attn.bias": "pytorch_model-00021-of-00022.bin",
|
1030 |
+
"transformer.h.75.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
|
1031 |
+
"transformer.h.75.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
|
1032 |
+
"transformer.h.75.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1033 |
+
"transformer.h.75.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1034 |
+
"transformer.h.75.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
|
1035 |
+
"transformer.h.75.ln_1.bias": "pytorch_model-00021-of-00022.bin",
|
1036 |
+
"transformer.h.75.ln_1.weight": "pytorch_model-00021-of-00022.bin",
|
1037 |
+
"transformer.h.75.ln_2.bias": "pytorch_model-00021-of-00022.bin",
|
1038 |
+
"transformer.h.75.ln_2.weight": "pytorch_model-00021-of-00022.bin",
|
1039 |
+
"transformer.h.75.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
|
1040 |
+
"transformer.h.75.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
|
1041 |
+
"transformer.h.75.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1042 |
+
"transformer.h.75.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1043 |
+
"transformer.h.76.attn.bias": "pytorch_model-00021-of-00022.bin",
|
1044 |
+
"transformer.h.76.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
|
1045 |
+
"transformer.h.76.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
|
1046 |
+
"transformer.h.76.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1047 |
+
"transformer.h.76.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1048 |
+
"transformer.h.76.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
|
1049 |
+
"transformer.h.76.ln_1.bias": "pytorch_model-00021-of-00022.bin",
|
1050 |
+
"transformer.h.76.ln_1.weight": "pytorch_model-00021-of-00022.bin",
|
1051 |
+
"transformer.h.76.ln_2.bias": "pytorch_model-00021-of-00022.bin",
|
1052 |
+
"transformer.h.76.ln_2.weight": "pytorch_model-00021-of-00022.bin",
|
1053 |
+
"transformer.h.76.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
|
1054 |
+
"transformer.h.76.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
|
1055 |
+
"transformer.h.76.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1056 |
+
"transformer.h.76.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1057 |
+
"transformer.h.77.attn.bias": "pytorch_model-00021-of-00022.bin",
|
1058 |
+
"transformer.h.77.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
|
1059 |
+
"transformer.h.77.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
|
1060 |
+
"transformer.h.77.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1061 |
+
"transformer.h.77.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1062 |
+
"transformer.h.77.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
|
1063 |
+
"transformer.h.77.ln_1.bias": "pytorch_model-00021-of-00022.bin",
|
1064 |
+
"transformer.h.77.ln_1.weight": "pytorch_model-00021-of-00022.bin",
|
1065 |
+
"transformer.h.77.ln_2.bias": "pytorch_model-00021-of-00022.bin",
|
1066 |
+
"transformer.h.77.ln_2.weight": "pytorch_model-00021-of-00022.bin",
|
1067 |
+
"transformer.h.77.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
|
1068 |
+
"transformer.h.77.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
|
1069 |
+
"transformer.h.77.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
|
1070 |
+
"transformer.h.77.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
|
1071 |
+
"transformer.h.78.attn.bias": "pytorch_model-00021-of-00022.bin",
|
1072 |
+
"transformer.h.78.attn.c_attn.bias": "pytorch_model-00022-of-00022.bin",
|
1073 |
+
"transformer.h.78.attn.c_attn.weight": "pytorch_model-00022-of-00022.bin",
|
1074 |
+
"transformer.h.78.attn.c_proj.bias": "pytorch_model-00022-of-00022.bin",
|
1075 |
+
"transformer.h.78.attn.c_proj.weight": "pytorch_model-00022-of-00022.bin",
|
1076 |
+
"transformer.h.78.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
|
1077 |
+
"transformer.h.78.ln_1.bias": "pytorch_model-00021-of-00022.bin",
|
1078 |
+
"transformer.h.78.ln_1.weight": "pytorch_model-00021-of-00022.bin",
|
1079 |
+
"transformer.h.78.ln_2.bias": "pytorch_model-00022-of-00022.bin",
|
1080 |
+
"transformer.h.78.ln_2.weight": "pytorch_model-00022-of-00022.bin",
|
1081 |
+
"transformer.h.78.mlp.c_fc.bias": "pytorch_model-00022-of-00022.bin",
|
1082 |
+
"transformer.h.78.mlp.c_fc.weight": "pytorch_model-00022-of-00022.bin",
|
1083 |
+
"transformer.h.78.mlp.c_proj.bias": "pytorch_model-00022-of-00022.bin",
|
1084 |
+
"transformer.h.78.mlp.c_proj.weight": "pytorch_model-00022-of-00022.bin",
|
1085 |
+
"transformer.h.79.attn.bias": "pytorch_model-00022-of-00022.bin",
|
1086 |
+
"transformer.h.79.attn.c_attn.bias": "pytorch_model-00022-of-00022.bin",
|
1087 |
+
"transformer.h.79.attn.c_attn.weight": "pytorch_model-00022-of-00022.bin",
|
1088 |
+
"transformer.h.79.attn.c_proj.bias": "pytorch_model-00022-of-00022.bin",
|
1089 |
+
"transformer.h.79.attn.c_proj.weight": "pytorch_model-00022-of-00022.bin",
|
1090 |
+
"transformer.h.79.attn.masked_bias": "pytorch_model-00022-of-00022.bin",
|
1091 |
+
"transformer.h.79.ln_1.bias": "pytorch_model-00022-of-00022.bin",
|
1092 |
+
"transformer.h.79.ln_1.weight": "pytorch_model-00022-of-00022.bin",
|
1093 |
+
"transformer.h.79.ln_2.bias": "pytorch_model-00022-of-00022.bin",
|
1094 |
+
"transformer.h.79.ln_2.weight": "pytorch_model-00022-of-00022.bin",
|
1095 |
+
"transformer.h.79.mlp.c_fc.bias": "pytorch_model-00022-of-00022.bin",
|
1096 |
+
"transformer.h.79.mlp.c_fc.weight": "pytorch_model-00022-of-00022.bin",
|
1097 |
+
"transformer.h.79.mlp.c_proj.bias": "pytorch_model-00022-of-00022.bin",
|
1098 |
+
"transformer.h.79.mlp.c_proj.weight": "pytorch_model-00022-of-00022.bin",
|
1099 |
+
"transformer.h.8.attn.bias": "pytorch_model-00003-of-00022.bin",
|
1100 |
+
"transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
|
1101 |
+
"transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
|
1102 |
+
"transformer.h.8.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
1103 |
+
"transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
1104 |
+
"transformer.h.8.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
|
1105 |
+
"transformer.h.8.ln_1.bias": "pytorch_model-00003-of-00022.bin",
|
1106 |
+
"transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00022.bin",
|
1107 |
+
"transformer.h.8.ln_2.bias": "pytorch_model-00003-of-00022.bin",
|
1108 |
+
"transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00022.bin",
|
1109 |
+
"transformer.h.8.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
|
1110 |
+
"transformer.h.8.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
|
1111 |
+
"transformer.h.8.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
1112 |
+
"transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
1113 |
+
"transformer.h.9.attn.bias": "pytorch_model-00003-of-00022.bin",
|
1114 |
+
"transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
|
1115 |
+
"transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
|
1116 |
+
"transformer.h.9.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
1117 |
+
"transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
1118 |
+
"transformer.h.9.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
|
1119 |
+
"transformer.h.9.ln_1.bias": "pytorch_model-00003-of-00022.bin",
|
1120 |
+
"transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00022.bin",
|
1121 |
+
"transformer.h.9.ln_2.bias": "pytorch_model-00003-of-00022.bin",
|
1122 |
+
"transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00022.bin",
|
1123 |
+
"transformer.h.9.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
|
1124 |
+
"transformer.h.9.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
|
1125 |
+
"transformer.h.9.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
|
1126 |
+
"transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
|
1127 |
+
"transformer.ln_f.bias": "pytorch_model-00022-of-00022.bin",
|
1128 |
+
"transformer.ln_f.weight": "pytorch_model-00022-of-00022.bin",
|
1129 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00022.bin"
|
1130 |
+
}
|
1131 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"[tsk]"
|
4 |
+
],
|
5 |
+
"bos_token": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"cls_token": "[cls]",
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": "[pad]",
|
21 |
+
"sep_token": "[sep]",
|
22 |
+
"unk_token": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenization_freelm.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer
|
2 |
+
|
3 |
+
class FLMTokenizer(GPT2Tokenizer):
|
4 |
+
model_input_names = ["input_ids", "attention_mask"]
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
vocab_file,
|
8 |
+
merges_file,
|
9 |
+
errors="replace",
|
10 |
+
unk_token="<|endoftext|>",
|
11 |
+
bos_token="<|endoftext|>",
|
12 |
+
eos_token="<|endoftext|>",
|
13 |
+
pad_token=None,
|
14 |
+
add_prefix_space=False,
|
15 |
+
add_bos_token=False,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
super().__init__(
|
19 |
+
vocab_file,
|
20 |
+
merges_file,
|
21 |
+
errors=errors,
|
22 |
+
unk_token=unk_token,
|
23 |
+
bos_token=bos_token,
|
24 |
+
eos_token=eos_token,
|
25 |
+
pad_token=pad_token,
|
26 |
+
add_prefix_space=add_prefix_space,
|
27 |
+
add_bos_token=add_bos_token,
|
28 |
+
**kwargs,
|
29 |
+
)
|
30 |
+
self.pat = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
tokenizer_config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_freelm.FLMTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<|endoftext|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"do_lower_case": false,
|
20 |
+
"eos_token": {
|
21 |
+
"__type": "AddedToken",
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"errors": "replace",
|
29 |
+
"model_max_length": 1000000000000000019884624838656,
|
30 |
+
"pad_token": null,
|
31 |
+
"tokenizer_class": "FLMTokenizer",
|
32 |
+
"unk_token": {
|
33 |
+
"__type": "AddedToken",
|
34 |
+
"content": "<|endoftext|>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": true,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
},
|
40 |
+
"use_fast": false
|
41 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|