jasonfang3900 commited on
Commit
8a01860
1 Parent(s): df0b4d6

First Upload.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model-00001-of-00022.bin filter=lfs diff=lfs merge=lfs -text
37
+ pytorch_model-00016-of-00022.bin filter=lfs diff=lfs merge=lfs -text
38
+ pytorch_model-00020-of-00022.bin filter=lfs diff=lfs merge=lfs -text
39
+ pytorch_model-00002-of-00022.bin filter=lfs diff=lfs merge=lfs -text
40
+ pytorch_model-00004-of-00022.bin filter=lfs diff=lfs merge=lfs -text
41
+ pytorch_model-00008-of-00022.bin filter=lfs diff=lfs merge=lfs -text
42
+ pytorch_model-00013-of-00022.bin filter=lfs diff=lfs merge=lfs -text
43
+ pytorch_model-00014-of-00022.bin filter=lfs diff=lfs merge=lfs -text
44
+ pytorch_model-00015-of-00022.bin filter=lfs diff=lfs merge=lfs -text
45
+ pytorch_model-00021-of-00022.bin filter=lfs diff=lfs merge=lfs -text
46
+ pytorch_model-00022-of-00022.bin filter=lfs diff=lfs merge=lfs -text
47
+ pytorch_model-00005-of-00022.bin filter=lfs diff=lfs merge=lfs -text
48
+ pytorch_model-00010-of-00022.bin filter=lfs diff=lfs merge=lfs -text
49
+ pytorch_model-00012-of-00022.bin filter=lfs diff=lfs merge=lfs -text
50
+ pytorch_model-00019-of-00022.bin filter=lfs diff=lfs merge=lfs -text
51
+ pytorch_model-00007-of-00022.bin filter=lfs diff=lfs merge=lfs -text
52
+ pytorch_model-00009-of-00022.bin filter=lfs diff=lfs merge=lfs -text
53
+ pytorch_model-00017-of-00022.bin filter=lfs diff=lfs merge=lfs -text
54
+ pytorch_model-00018-of-00022.bin filter=lfs diff=lfs merge=lfs -text
55
+ pytorch_model-00003-of-00022.bin filter=lfs diff=lfs merge=lfs -text
56
+ pytorch_model-00006-of-00022.bin filter=lfs diff=lfs merge=lfs -text
57
+ pytorch_model-00011-of-00022.bin filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "[cls]": 100259,
3
+ "[pad]": 100258,
4
+ "[sep]": 100260,
5
+ "[tsk]": 100257
6
+ }
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_fast",
3
+ "attn_pdrop": 0.1,
4
+ "auto_map": {
5
+ "AutoConfig": "configuration_flm.FLMConfig",
6
+ "AutoModel": "modeling_flm.FLM",
7
+ "AutoModelForCausalLM": "modeling_flm.FLM"
8
+ },
9
+ "bos_token_id": 100351,
10
+ "cls_token_id": 100351,
11
+ "embd_pdrop": 0.1,
12
+ "eos_token_id": 100351,
13
+ "initializer_range": 0.02,
14
+ "input_mult": 1.0,
15
+ "layer_norm_epsilon": 1e-05,
16
+ "model_type": "flm",
17
+ "mup_base_width": 256,
18
+ "mup_scale_factor": 40.0,
19
+ "n_embd": 10240,
20
+ "n_head": 80,
21
+ "n_inner": 40960,
22
+ "n_layer": 80,
23
+ "n_positions": 2048,
24
+ "output_mult": 2.0,
25
+ "relative_encoding": "rotary",
26
+ "reorder_and_upcast_attn": true,
27
+ "resid_pdrop": 0.1,
28
+ "rotary_theta": 10000,
29
+ "rotary_use_xpos": true,
30
+ "rotary_xpos_scale_base": 512,
31
+ "scale_attn_by_inverse_layer_idx": true,
32
+ "scale_attn_weights": true,
33
+ "summary_activation": null,
34
+ "summary_first_dropout": 0.1,
35
+ "summary_proj_to_labels": true,
36
+ "summary_type": "cls_index",
37
+ "summary_use_proj": true,
38
+ "tokenizer_class": "FLMTokenizer",
39
+ "transformers_version": "4.30.2",
40
+ "use_cache": true,
41
+ "use_mup": true,
42
+ "vocab_size": 100352
43
+ }
configuration_flm.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright
3
+
4
+ """ Cofe-AI FLM configuration"""
5
+
6
+ from transformers.configuration_utils import PretrainedConfig
7
+ from transformers.utils import logging
8
+
9
+
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+ FLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
14
+ # "freelm": "xxxx/config.json",
15
+ # "freelm-medium": "xxxx/config.json",
16
+ # "freelm-large": "xxxx/config.json",
17
+ # "freelm-xl": "xxxx/config.json",
18
+ }
19
+
20
+
21
+ class FLMConfig(PretrainedConfig):
22
+ """
23
+ xxxxxx
24
+
25
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
26
+ documentation from [`PretrainedConfig`] for more information.
27
+
28
+ Args:
29
+ vocab_size (`int`, *optional*, defaults to 50257):
30
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
31
+ `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
32
+ n_positions (`int`, *optional*, defaults to 1024):
33
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
34
+ just in case (e.g., 512 or 1024 or 2048).
35
+ n_embd (`int`, *optional*, defaults to 768):
36
+ Dimensionality of the embeddings and hidden states.
37
+ n_layer (`int`, *optional*, defaults to 12):
38
+ Number of hidden layers in the Transformer encoder.
39
+ n_head (`int`, *optional*, defaults to 12):
40
+ Number of attention heads for each attention layer in the Transformer encoder.
41
+ n_inner (`int`, *optional*, defaults to None):
42
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
43
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
44
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
45
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
46
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
47
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
48
+ The dropout ratio for the embeddings.
49
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
50
+ The dropout ratio for the attention.
51
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
52
+ The epsilon to use in the layer normalization layers.
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
56
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
57
+ [`TFGPT2DoubleHeadsModel`].
58
+
59
+ Has to be one of the following options:
60
+
61
+ - `"last"`: Take the last token hidden state (like XLNet).
62
+ - `"first"`: Take the first token hidden state (like BERT).
63
+ - `"mean"`: Take the mean of all tokens hidden states.
64
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
65
+ - `"attn"`: Not implemented now, use multi-head attention.
66
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
67
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
68
+ [`TFGPT2DoubleHeadsModel`].
69
+
70
+ Whether or not to add a projection after the vector extraction.
71
+ summary_activation (`str`, *optional*):
72
+ Argument used when doing sequence summary. Used in for the multiple choice head in
73
+ [`GPT2DoubleHeadsModel`].
74
+
75
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
76
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
77
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
78
+ [`TFGPT2DoubleHeadsModel`].
79
+
80
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
81
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
82
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
83
+ [`TFGPT2DoubleHeadsModel`].
84
+
85
+ The dropout ratio to be used after the projection and activation.
86
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
87
+ Scale attention weights by dividing by sqrt(hidden_size)..
88
+ use_cache (`bool`, *optional*, defaults to `True`):
89
+ Whether or not the model should return the last key/values attentions (not used by all models).
90
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
91
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
92
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
93
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
94
+ dot-product/softmax to float() when training with mixed precision.
95
+
96
+ Example:
97
+
98
+ ```python
99
+ >>> from transformers import GPT2Config, GPT2Model
100
+
101
+ >>> # Initializing a GPT2 configuration
102
+ >>> configuration = GPT2Config()
103
+
104
+ >>> # Initializing a model (with random weights) from the configuration
105
+ >>> model = GPT2Model(configuration)
106
+
107
+ >>> # Accessing the model configuration
108
+ >>> configuration = model.config
109
+ ```"""
110
+
111
+ model_type = "flm"
112
+ keys_to_ignore_at_inference = ["past_key_values"]
113
+ attribute_map = {
114
+ "hidden_size": "n_embd",
115
+ "max_position_embeddings": "n_positions",
116
+ "num_attention_heads": "n_head",
117
+ "num_hidden_layers": "n_layer",
118
+ }
119
+
120
+ def __init__(
121
+ self,
122
+ vocab_size=50257,
123
+ n_positions=1024,
124
+ n_embd=768,
125
+ n_layer=12,
126
+ n_head=12,
127
+ n_inner=None,
128
+ activation_function="gelu_new",
129
+ resid_pdrop=0.1,
130
+ embd_pdrop=0.1,
131
+ attn_pdrop=0.1,
132
+ layer_norm_epsilon=1e-5,
133
+ initializer_range=0.02,
134
+ summary_type="cls_index",
135
+ summary_use_proj=True,
136
+ summary_activation=None,
137
+ summary_proj_to_labels=True,
138
+ summary_first_dropout=0.1,
139
+ scale_attn_weights=True,
140
+ use_cache=True,
141
+ bos_token_id=50256,
142
+ eos_token_id=50256,
143
+ cls_token_id=50256,
144
+ sep_token_id=50256,
145
+ pad_token_id=50256,
146
+ scale_attn_by_inverse_layer_idx=False,
147
+ reorder_and_upcast_attn=False,
148
+ relative_encoding=None,
149
+ rotary_theta=10000,
150
+ rotary_use_xpos=True,
151
+ rotary_xpos_scale_base=512,
152
+ use_mup=False,
153
+ mup_scale_factor=1.0,
154
+ output_mult=1.0,
155
+ input_mult=1.0,
156
+ mup_base_width=256,
157
+ **kwargs,
158
+ ):
159
+ self.vocab_size = vocab_size
160
+ self.n_positions = n_positions
161
+ self.n_embd = n_embd
162
+ self.n_layer = n_layer
163
+ self.n_head = n_head
164
+ self.n_inner = n_inner
165
+ self.activation_function = activation_function
166
+ self.resid_pdrop = resid_pdrop
167
+ self.embd_pdrop = embd_pdrop
168
+ self.attn_pdrop = attn_pdrop
169
+ self.layer_norm_epsilon = layer_norm_epsilon
170
+ self.initializer_range = initializer_range
171
+ self.summary_type = summary_type
172
+ self.summary_use_proj = summary_use_proj
173
+ self.summary_activation = summary_activation
174
+ self.summary_first_dropout = summary_first_dropout
175
+ self.summary_proj_to_labels = summary_proj_to_labels
176
+ self.scale_attn_weights = scale_attn_weights
177
+ self.use_cache = use_cache
178
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
179
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
180
+ self.relative_encoding = relative_encoding
181
+
182
+ # for rotary
183
+ self.rotary_theta = rotary_theta
184
+ self.rotary_use_xpos = rotary_use_xpos
185
+ self.rotary_xpos_scale_base = rotary_xpos_scale_base
186
+
187
+ # for mup
188
+ self.use_mup = use_mup
189
+ self.mup_scale_factor = mup_scale_factor
190
+ self.output_mult = output_mult
191
+ self.input_mult = input_mult
192
+ self.mup_base_width = mup_base_width
193
+
194
+ self.bos_token_id = bos_token_id
195
+ self.eos_token_id = eos_token_id
196
+ self.cls_token_id = cls_token_id
197
+ self.sep_token_id = sep_token_id
198
+ self.pad_token_id = pad_token_id
199
+
200
+
201
+ self.architectures = ["FLM"]
202
+ self.auto_map = {
203
+ "AutoConfig": "configuration_flm.FLMConfig",
204
+ "AutoModel": "modeling_flm.FLM",
205
+ "AutoModelForCausalLM": "modeling_flm.FLM"
206
+ }
207
+
208
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_flm.py ADDED
@@ -0,0 +1,954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on OpenAI's GPT-2 library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared to GPT-2.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import math
21
+ import torch
22
+ import torch.nn.functional as f
23
+ from einops import rearrange, repeat
24
+ from torch import einsum, nn
25
+ from torch.cuda.amp import autocast
26
+ from transformers.activations import ACT2FN
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutputWithPastAndCrossAttentions,
29
+ CausalLMOutputWithCrossAttentions,
30
+ SequenceClassifierOutputWithPast,
31
+ )
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_conv1d_layer
34
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
35
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
36
+ from .configuration_flm import FLMConfig
37
+
38
+
39
+ class Conv1D(nn.Module):
40
+
41
+ def __init__(self, nf, nx):
42
+ super().__init__()
43
+ self.nf = nf
44
+ self.weight = nn.Parameter(torch.empty(nx, nf))
45
+ self.bias = nn.Parameter(torch.zeros(nf))
46
+ nn.init.normal_(self.weight, std=0.02)
47
+
48
+ def forward(self, x):
49
+ x = torch.matmul(x, self.weight) + self.bias
50
+ return x
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ def exists(v):
57
+ return v is not None
58
+
59
+
60
+ class RotaryEmbedding(nn.Module):
61
+ def __init__(self, dim, use_xpos=False, xpos_scale_base=512, theta=10000):
62
+ super().__init__()
63
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
64
+ self.register_buffer('inv_freq', inv_freq)
65
+ self.cache = dict()
66
+ self.cache_scale = dict()
67
+ self.use_xpos = use_xpos
68
+ if not use_xpos:
69
+ self.register_buffer('scale', None)
70
+ return
71
+ scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
72
+ self.register_buffer('scale', scale)
73
+ self.scale_base = xpos_scale_base
74
+
75
+ def forward(self, seq, cache_key=None):
76
+
77
+ if cache_key is not None and cache_key in self.cache:
78
+ return self.cache[cache_key]
79
+
80
+ inv_freq = self.inv_freq.to(device=seq.device)
81
+ freqs = einsum('i , j -> i j', seq, inv_freq)
82
+ # first part even vector components, second part odd vector components,
83
+ # 2 * dim in dimension size
84
+ scale = torch.cat((freqs, freqs), dim=-1)
85
+ if exists(cache_key):
86
+ self.cache[cache_key] = scale
87
+ return scale
88
+
89
+ def rotate_queries_and_keys(self, q, k, seq_dim=-2):
90
+ """
91
+ use this only when xpos is activated.
92
+ """
93
+ assert self.use_xpos and q.device == k.device
94
+ device, seq_len_k, seq_len_q = k.device, k.shape[seq_dim], q.shape[seq_dim]
95
+ pos_seq_k = torch.arange(seq_len_k, device=device, dtype=torch.float32)
96
+ pos_seq_q = torch.arange(seq_len_k - seq_len_q, seq_len_k, device=device, dtype=torch.float32)
97
+ freqs_k = self.forward(pos_seq_k, cache_key=f"{0}:{seq_len_k}")
98
+ freqs_q = self.forward(pos_seq_q, cache_key=f"{seq_len_k - seq_len_q}:{seq_len_k}")
99
+ scale_k = self.get_scale(pos_seq_k)
100
+ scale_q = self.get_scale(pos_seq_q, offset=seq_len_k - seq_len_q) # 这里的offset是Q相对于K的offset
101
+ rotated_q = apply_rotary_emb(freqs_q, q, scale=scale_q)
102
+ rotated_k = apply_rotary_emb(freqs_k, k, scale=scale_k ** -1)
103
+ return rotated_q, rotated_k
104
+
105
+ def get_scale(self, t, cache_key=None, offset=0, ):
106
+ assert self.use_xpos, 'This function is only useful for xpos.'
107
+ if exists(cache_key) and cache_key in self.cache_scale:
108
+ return self.cache_scale[cache_key]
109
+ if callable(t):
110
+ t = t()
111
+ length = len(t)
112
+ min_pos = -(length + offset) // 2
113
+ max_pos = length + offset + min_pos
114
+ power = torch.arange(min_pos, max_pos, 1).to(device=self.scale.device) / self.scale_base
115
+ scale = self.scale ** rearrange(power, 'n -> n 1')
116
+ scale = scale[-length:, :]
117
+ scale = torch.cat((scale, scale), dim=-1)
118
+ if exists(cache_key):
119
+ self.cache_scale[cache_key] = scale
120
+ return scale
121
+
122
+
123
+ def rotate_half(x):
124
+ """
125
+ change sign so the last dimension becomes [-odd, +even]
126
+ """
127
+ x1, x2 = torch.chunk(x, 2, dim=-1)
128
+ return torch.cat((-x2, x1), dim=-1)
129
+
130
+
131
+ def apply_rotary_emb(freqs, t, start_index=0, scale=1.):
132
+ """
133
+ freq: seqlen x dim
134
+ t: [batchsize * headnum , seqlen , dim (dim_of_head actually)]
135
+ """
136
+ dtype_t = t.dtype
137
+ freqs = freqs.to(device=t.device)
138
+ if isinstance(scale, torch.Tensor):
139
+ scale = scale.to(device=t.device)
140
+ rot_dim = freqs.shape[-1]
141
+ end_index = start_index + rot_dim
142
+ t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
143
+ t = (t * freqs.cos() + rotate_half(t) * freqs.sin()) * scale
144
+ rotated = torch.cat((t_left, t, t_right), dim=-1)
145
+ rotated = rotated.to(dtype=dtype_t)
146
+ return rotated
147
+
148
+
149
+ class FLMAttention(nn.Module):
150
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
151
+ super().__init__()
152
+
153
+ max_positions = config.max_position_embeddings
154
+ self.register_buffer(
155
+ "bias",
156
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
157
+ 1, 1, max_positions, max_positions
158
+ ),
159
+ )
160
+ self.register_buffer("masked_bias", torch.tensor(-1e4))
161
+
162
+ self.embed_dim = config.hidden_size
163
+ self.num_heads = config.num_attention_heads
164
+ self.head_dim = self.embed_dim // self.num_heads
165
+ self.split_size = self.embed_dim
166
+ if self.head_dim * self.num_heads != self.embed_dim:
167
+ raise ValueError(
168
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
169
+ f" {self.num_heads})."
170
+ )
171
+
172
+ self.scale_attn_weights = config.scale_attn_weights
173
+ self.is_cross_attention = is_cross_attention
174
+
175
+ # Layer-wise attention scaling, reordering, and upcasting
176
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
177
+ # for alignment with megatron-lm in softmax scale
178
+ self.layer_idx = max(1, layer_idx)
179
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
180
+
181
+ self.relative_encoding = config.relative_encoding
182
+ self.rotary_use_xpos = config.rotary_use_xpos
183
+
184
+ self.use_mup = config.use_mup
185
+
186
+ if self.is_cross_attention:
187
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
188
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
189
+ else:
190
+ self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
191
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
192
+
193
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
194
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
195
+
196
+ self.pruned_heads = set()
197
+
198
+ def set_max_positions(self, max_positions, device='cuda'):
199
+ self.max_positions = max_positions
200
+ self.register_buffer(
201
+ "bias",
202
+ torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)).view(
203
+ 1, 1, self.max_positions, self.max_positions
204
+ ).to(device=device)
205
+ )
206
+
207
+ def prune_heads(self, heads):
208
+ if len(heads) == 0:
209
+ return
210
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
211
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
212
+
213
+ # Prune conv1d layers
214
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
215
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
216
+
217
+ # Update hyper params
218
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
219
+ self.num_heads = self.num_heads - len(heads)
220
+ self.pruned_heads = self.pruned_heads.union(heads)
221
+
222
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
223
+ # (batch, head, seq_length, head_features)
224
+ # batch_size, head_num, k_seq_len(q_seq_len), head_features
225
+ batch_size, head_num, k_seq_len, head_features = key.shape
226
+ _, _, q_seq_len, _ = query.shape
227
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
228
+
229
+ if self.scale_attn_weights:
230
+ if self.use_mup:
231
+ attn_weights = attn_weights / torch.full(
232
+ [], value.size(-1) / (value.size(-1) ** 0.5), dtype=attn_weights.dtype,
233
+ device=attn_weights.device
234
+ )
235
+ else:
236
+ attn_weights = attn_weights / torch.full(
237
+ [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
238
+ )
239
+
240
+ if not self.is_cross_attention:
241
+ # if only "normal" attention layer implements causal mask
242
+ query_length, key_length = query.size(-2), key.size(-2)
243
+ causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
244
+ mask_value = torch.finfo(attn_weights.dtype).min
245
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
246
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
247
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
248
+ attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
249
+
250
+ if attention_mask is not None:
251
+ # Apply the attention mask
252
+ attn_weights = attn_weights + attention_mask
253
+
254
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
255
+
256
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
257
+ attn_weights = attn_weights.type(value.dtype)
258
+ attn_weights = self.attn_dropout(attn_weights)
259
+
260
+ # Mask heads if we want to
261
+ if head_mask is not None:
262
+ attn_weights = attn_weights * head_mask
263
+
264
+ attn_output = torch.matmul(attn_weights, value)
265
+
266
+ return attn_output, attn_weights
267
+
268
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
269
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
270
+ bsz, num_heads, q_seq_len, dk = query.size()
271
+ _, _, k_seq_len, _ = key.size()
272
+
273
+ # Preallocate attn_weights for `baddbmm`
274
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=query.dtype, device=query.device)
275
+
276
+ # Compute Scale Factor
277
+ scale_factor = 1.0
278
+ if self.scale_attn_weights:
279
+ scale_factor /= float(value.size(-1)) ** 0.5
280
+
281
+ if self.scale_attn_by_inverse_layer_idx:
282
+ scale_factor /= float(self.layer_idx)
283
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
284
+ with autocast(enabled=False):
285
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
286
+ attn_weights = torch.baddbmm(attn_weights, q, k, beta=0, alpha=scale_factor)
287
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
288
+
289
+ if not self.is_cross_attention:
290
+ attn_weights = attn_weights.float()
291
+ if self.scale_attn_by_inverse_layer_idx:
292
+ attn_weights *= self.layer_idx
293
+ # if only "normal" attention layer implements causal mask
294
+ query_length, key_length = query.size(-2), key.size(-2)
295
+ causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
296
+ mask_value = -10000.0 # align with megatron-lm
297
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
298
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
299
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
300
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
301
+
302
+ if attention_mask is not None:
303
+ # Apply the attention mask
304
+ attn_weights = attn_weights + attention_mask
305
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
306
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
307
+ if attn_weights.dtype != torch.float32:
308
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
309
+ attn_weights = attn_weights.type(value.dtype)
310
+ attn_weights = self.attn_dropout(attn_weights)
311
+
312
+ # Mask heads if we want to
313
+ if head_mask is not None:
314
+ attn_weights = attn_weights * head_mask
315
+ attn_output = torch.matmul(attn_weights, value)
316
+ return attn_output, attn_weights
317
+
318
+ def _split_heads(self, tensor, num_heads, attn_head_size):
319
+ """
320
+ Splits hidden_size dim into attn_head_size and num_heads
321
+ """
322
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
323
+ tensor = tensor.view(new_shape)
324
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
325
+
326
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
327
+ """
328
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
329
+ """
330
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
331
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
332
+ return tensor.view(new_shape)
333
+
334
+ def forward(
335
+ self,
336
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
337
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
338
+ attention_mask: Optional[torch.FloatTensor] = None,
339
+ head_mask: Optional[torch.FloatTensor] = None,
340
+ encoder_hidden_states: Optional[torch.Tensor] = None,
341
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
342
+ rotary_embedding: Optional[RotaryEmbedding] = None,
343
+ use_cache: Optional[bool] = False,
344
+ output_attentions: Optional[bool] = False,
345
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
346
+ if encoder_hidden_states is not None:
347
+ if not hasattr(self, "q_attn"):
348
+ raise ValueError(
349
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
350
+ "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
351
+ )
352
+
353
+ query = self.q_attn(hidden_states)
354
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
355
+ attention_mask = encoder_attention_mask
356
+ else:
357
+ query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
358
+
359
+ query = self._split_heads(query, self.num_heads, self.head_dim)
360
+ key = self._split_heads(key, self.num_heads, self.head_dim)
361
+ value = self._split_heads(value, self.num_heads, self.head_dim)
362
+
363
+ if layer_past is not None:
364
+ past_key, past_value = layer_past
365
+ key = torch.cat((past_key, key), dim=-2)
366
+ value = torch.cat((past_value, value), dim=-2)
367
+
368
+ if use_cache is True:
369
+ present = (key, value)
370
+ else:
371
+ present = None
372
+
373
+ batch_size, head_num, k_seq_len, head_features = key.shape
374
+ _, _, q_seq_len, _ = query.shape
375
+ if rotary_embedding is not None:
376
+ query = query.contiguous().view(batch_size * head_num, q_seq_len, head_features)
377
+ key = key.contiguous().view(batch_size * head_num, k_seq_len, head_features)
378
+
379
+ # batch_size * head_num, k_seq_len(q_seq_len), head_features
380
+ if self.rotary_use_xpos:
381
+ # query: [batch_size * head_num, seqlen, hn]
382
+ query, key = rotary_embedding.rotate_queries_and_keys(query, key)
383
+ else:
384
+ query = rotary_embedding.rotate_queries_or_keys(query)
385
+ key = rotary_embedding.rotate_queries_or_keys(key)
386
+ # batch_size * head_num, k_seq_len(q_seq_len), head_features
387
+ query = query.view(batch_size, head_num, q_seq_len, head_features)
388
+ key = key.view(batch_size, head_num, k_seq_len, head_features)
389
+
390
+ if self.reorder_and_upcast_attn:
391
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
392
+ else:
393
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
394
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
395
+ attn_output = self.c_proj(attn_output)
396
+ attn_output = self.resid_dropout(attn_output)
397
+ outputs = (attn_output, present)
398
+ if output_attentions:
399
+ outputs += (attn_weights,)
400
+
401
+ return outputs
402
+
403
+
404
+ class FLMMLP(nn.Module):
405
+ def __init__(self, intermediate_size, config):
406
+ super().__init__()
407
+ embed_dim = config.hidden_size
408
+ self.c_fc = Conv1D(intermediate_size, embed_dim)
409
+ self.c_proj = Conv1D(embed_dim, intermediate_size)
410
+ self.act = ACT2FN[config.activation_function]
411
+ self.dropout = nn.Dropout(config.resid_pdrop)
412
+
413
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
414
+ hidden_states = self.c_fc(hidden_states)
415
+ hidden_states = self.act(hidden_states)
416
+ hidden_states = self.c_proj(hidden_states)
417
+ hidden_states = self.dropout(hidden_states)
418
+ return hidden_states
419
+
420
+
421
+ class FLMBlock(nn.Module):
422
+ def __init__(self, config, layer_idx=None):
423
+ super().__init__()
424
+ hidden_size = config.hidden_size
425
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
426
+ self.layer_idx = layer_idx
427
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
428
+ self.attn = FLMAttention(config, layer_idx=layer_idx)
429
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
430
+
431
+ if config.add_cross_attention:
432
+ self.crossattention = FLMAttention(config, is_cross_attention=True, layer_idx=layer_idx)
433
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
434
+
435
+ self.mlp = FLMMLP(inner_dim, config)
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
440
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
441
+ attention_mask: Optional[torch.FloatTensor] = None,
442
+ head_mask: Optional[torch.FloatTensor] = None,
443
+ encoder_hidden_states: Optional[torch.Tensor] = None,
444
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
445
+ rotary_embedding: Optional[RotaryEmbedding] = None,
446
+ use_cache: Optional[bool] = False,
447
+ output_attentions: Optional[bool] = False,
448
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
449
+ residual = hidden_states
450
+ hidden_states = self.ln_1(hidden_states)
451
+ attn_outputs = self.attn(
452
+ hidden_states,
453
+ layer_past=layer_past,
454
+ attention_mask=attention_mask,
455
+ head_mask=head_mask,
456
+ rotary_embedding=rotary_embedding,
457
+ use_cache=use_cache,
458
+ output_attentions=output_attentions
459
+ )
460
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
461
+ outputs = attn_outputs[1:]
462
+ # residual connection
463
+ hidden_states = attn_output + residual
464
+
465
+ residual = hidden_states
466
+ hidden_states = self.ln_2(hidden_states)
467
+ feed_forward_hidden_states = self.mlp(hidden_states)
468
+ # residual connection
469
+ hidden_states = residual + feed_forward_hidden_states
470
+ if use_cache:
471
+ outputs = (hidden_states,) + outputs
472
+ else:
473
+ outputs = (hidden_states,) + outputs[1:]
474
+
475
+ return outputs
476
+
477
+
478
+ class FLMPretrainedModel(PreTrainedModel):
479
+ """
480
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
481
+ models.
482
+ """
483
+
484
+ config_class = FLMConfig
485
+ load_tf_weights = None
486
+ base_model_prefix = "transformer"
487
+ is_parallelizable = True
488
+ supports_gradient_checkpointing = True
489
+ _no_split_modules = ["FLMBlock"]
490
+
491
+ def __init__(self, *inputs, **kwargs):
492
+ super().__init__(*inputs, **kwargs)
493
+
494
+ def _init_weights(self, module):
495
+ """Initialize the weights."""
496
+ if isinstance(module, (nn.Linear, Conv1D)):
497
+ # Slightly different from the TF version which uses truncated_normal for initialization
498
+ # cf https://github.com/pytorch/pytorch/pull/5617
499
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
500
+ if module.bias is not None:
501
+ module.bias.data.zero_()
502
+ elif isinstance(module, nn.Embedding):
503
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
504
+ if module.padding_idx is not None:
505
+ module.weight.data[module.padding_idx].zero_()
506
+ elif isinstance(module, nn.LayerNorm):
507
+ module.bias.data.zero_()
508
+ module.weight.data.fill_(1.0)
509
+
510
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
511
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
512
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
513
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
514
+ #
515
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
516
+ for name, p in module.named_parameters():
517
+ if name == "c_proj.weight":
518
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
519
+ p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
520
+
521
+ def _set_gradient_checkpointing(self, module, value=False):
522
+ if isinstance(module, FLMTransformer):
523
+ module.gradient_checkpointing = value
524
+
525
+
526
+ class FLMTransformer(FLMPretrainedModel):
527
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
528
+
529
+ def __init__(self, config):
530
+ super().__init__(config)
531
+
532
+ self.embed_dim = config.hidden_size
533
+
534
+ self.relative_encoding = config.relative_encoding
535
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
536
+
537
+ self.use_mup = config.use_mup
538
+ if self.use_mup:
539
+ self.input_mult = config.input_mult
540
+
541
+ if self.relative_encoding is None:
542
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
543
+ elif self.relative_encoding == 'rotary':
544
+ pe_dim = config.n_embd // config.n_head
545
+ self.wpe = RotaryEmbedding(pe_dim,
546
+ use_xpos=config.rotary_use_xpos,
547
+ xpos_scale_base=config.rotary_xpos_scale_base,
548
+ theta=config.rotary_theta
549
+ )
550
+
551
+ else:
552
+ raise RuntimeError(
553
+ f'Unknown relative positional encoding type: `relative_encoding`={self.relative_encoding}')
554
+ self.drop = nn.Dropout(config.embd_pdrop)
555
+ self.h = nn.ModuleList([FLMBlock(config, layer_idx=i + 1) for i in range(config.num_hidden_layers)])
556
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
557
+
558
+ # Model parallel
559
+ self.model_parallel = False
560
+ self.device_map = None
561
+ self.gradient_checkpointing = False
562
+
563
+ # Initialize weights and apply final processing
564
+ self.post_init()
565
+
566
+ # @add_start_docstrings(PARALLELIZE_DOCSTRING)
567
+ def parallelize(self, device_map=None):
568
+ # Check validity of device_map
569
+ self.device_map = (
570
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
571
+ )
572
+ assert_device_map(self.device_map, len(self.h))
573
+ self.model_parallel = True
574
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
575
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
576
+ self.wte = self.wte.to(self.first_device)
577
+ self.wpe = self.wpe.to(self.first_device)
578
+ # Load onto devices
579
+ for k, v in self.device_map.items():
580
+ for block in v:
581
+ cuda_device = "cuda:" + str(k)
582
+ self.h[block] = self.h[block].to(cuda_device)
583
+ # ln_f to last
584
+ self.ln_f = self.ln_f.to(self.last_device)
585
+
586
+ def deparallelize(self):
587
+ self.model_parallel = False
588
+ self.device_map = None
589
+ self.first_device = "cpu"
590
+ self.last_device = "cpu"
591
+ self.wte = self.wte.to("cpu")
592
+ self.wpe = self.wpe.to("cpu")
593
+ for index in range(len(self.h)):
594
+ self.h[index] = self.h[index].to("cpu")
595
+ self.ln_f = self.ln_f.to("cpu")
596
+ torch.cuda.empty_cache()
597
+
598
+ def get_input_embeddings(self):
599
+ return self.wte
600
+
601
+ def set_input_embeddings(self, new_embeddings):
602
+ self.wte = new_embeddings
603
+
604
+ def _prune_heads(self, heads_to_prune):
605
+ """
606
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
607
+ """
608
+ for layer, heads in heads_to_prune.items():
609
+ self.h[layer].attn.prune_heads(heads)
610
+
611
+ def forward(
612
+ self,
613
+ input_ids: Optional[torch.LongTensor] = None,
614
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
615
+ attention_mask: Optional[torch.FloatTensor] = None,
616
+ token_type_ids: Optional[torch.LongTensor] = None,
617
+ position_ids: Optional[torch.LongTensor] = None,
618
+ head_mask: Optional[torch.FloatTensor] = None,
619
+ inputs_embeds: Optional[torch.FloatTensor] = None,
620
+ encoder_hidden_states: Optional[torch.Tensor] = None,
621
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
622
+ use_cache: Optional[bool] = None,
623
+ output_attentions: Optional[bool] = None,
624
+ output_hidden_states: Optional[bool] = None,
625
+ return_dict: Optional[bool] = None,
626
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
627
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
628
+ output_hidden_states = (
629
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
630
+ )
631
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
632
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
633
+
634
+ if input_ids is not None and inputs_embeds is not None:
635
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
636
+ elif input_ids is not None:
637
+ input_shape = input_ids.size()
638
+ input_ids = input_ids.view(-1, input_shape[-1])
639
+ batch_size = input_ids.shape[0]
640
+ elif inputs_embeds is not None:
641
+ input_shape = inputs_embeds.size()[:-1]
642
+ batch_size = inputs_embeds.shape[0]
643
+ else:
644
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
645
+
646
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
647
+
648
+ if token_type_ids is not None:
649
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
650
+ if position_ids is not None:
651
+ position_ids = position_ids.view(-1, input_shape[-1])
652
+
653
+ if past_key_values is None:
654
+ past_length = 0
655
+ past_key_values = tuple([None] * len(self.h))
656
+ else:
657
+ past_length = past_key_values[0][0].size(-2)
658
+ if position_ids is None:
659
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
660
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
661
+
662
+ # GPT2Attention mask.
663
+ if attention_mask is not None:
664
+ if batch_size <= 0:
665
+ raise ValueError("batch_size has to be defined and > 0")
666
+ attention_mask = attention_mask.view(batch_size, -1)
667
+ # We create a 3D attention mask from a 2D tensor mask.
668
+ # Sizes are [batch_size, 1, 1, to_seq_length]
669
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
670
+ # this attention mask is more simple than the triangular masking of causal attention
671
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
672
+ attention_mask = attention_mask[:, None, None, :]
673
+
674
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
675
+ # masked positions, this operation will create a tensor which is 0.0 for
676
+ # positions we want to attend and the dtype's smallest value for masked positions.
677
+ # Since we are adding it to the raw scores before the softmax, this is
678
+ # effectively the same as removing these entirely.
679
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
680
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
681
+
682
+ # If a 2D or 3D attention mask is provided for the cross-attention
683
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
684
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
685
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
686
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
687
+ if encoder_attention_mask is None:
688
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
689
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
690
+ else:
691
+ encoder_attention_mask = None
692
+
693
+ # Prepare head mask if needed
694
+ # 1.0 in head_mask indicate we keep the head
695
+ # attention_probs has shape bsz x n_heads x N x N
696
+ # head_mask has shape n_layer x batch x n_heads x N x N
697
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
698
+
699
+ if inputs_embeds is None:
700
+ inputs_embeds = self.wte(input_ids)
701
+
702
+ # Mup
703
+ if self.use_mup:
704
+ inputs_embeds = inputs_embeds * self.input_mult
705
+ if self.relative_encoding is None:
706
+ position_embeds = self.wpe(position_ids)
707
+ hidden_states = inputs_embeds + position_embeds
708
+ elif self.relative_encoding == 'rotary':
709
+ hidden_states = inputs_embeds
710
+ if token_type_ids is not None:
711
+ token_type_embeds = self.wte(token_type_ids)
712
+ hidden_states = hidden_states + token_type_embeds
713
+ hidden_states = self.drop(hidden_states)
714
+
715
+ output_shape = input_shape + (hidden_states.size(-1),)
716
+
717
+ presents = () if use_cache else None
718
+ all_self_attentions = () if output_attentions else None
719
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
720
+ all_hidden_states = () if output_hidden_states else None
721
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
722
+
723
+ # Model parallel
724
+ if self.model_parallel:
725
+ torch.cuda.set_device(hidden_states.device)
726
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
727
+ if layer_past is not None:
728
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
729
+ # Ensure that attention_mask is always on the same device as hidden_states
730
+ if attention_mask is not None:
731
+ attention_mask = attention_mask.to(hidden_states.device)
732
+ if isinstance(head_mask, torch.Tensor):
733
+ head_mask = head_mask.to(hidden_states.device)
734
+ if output_hidden_states:
735
+ all_hidden_states = all_hidden_states + (hidden_states,)
736
+
737
+ if self.gradient_checkpointing and self.training:
738
+
739
+ if use_cache:
740
+ logger.warning(
741
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
742
+ )
743
+ use_cache = False
744
+
745
+ def create_custom_forward(module):
746
+ def custom_forward(*inputs):
747
+ # None for past_key_value
748
+ return module(*inputs, use_cache, output_attentions)
749
+
750
+ return custom_forward
751
+
752
+ outputs = torch.utils.checkpoint.checkpoint(
753
+ create_custom_forward(block),
754
+ hidden_states,
755
+ None,
756
+ attention_mask,
757
+ head_mask[i],
758
+ encoder_hidden_states,
759
+ encoder_attention_mask,
760
+ )
761
+ else:
762
+ outputs = block(
763
+ hidden_states,
764
+ layer_past=layer_past,
765
+ attention_mask=attention_mask,
766
+ head_mask=head_mask[i],
767
+ encoder_hidden_states=encoder_hidden_states,
768
+ encoder_attention_mask=encoder_attention_mask,
769
+ rotary_embedding=self.wpe if self.relative_encoding == 'rotary' else None,
770
+ use_cache=use_cache,
771
+ output_attentions=output_attentions
772
+ )
773
+
774
+ hidden_states = outputs[0]
775
+ if use_cache is True:
776
+ presents = presents + (outputs[1],)
777
+
778
+ if output_attentions:
779
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
780
+ if self.config.add_cross_attention:
781
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
782
+
783
+ # Model Parallel: If it's the last layer for that device, put things on the next device
784
+ if self.model_parallel:
785
+ for k, v in self.device_map.items():
786
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
787
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
788
+
789
+ hidden_states = self.ln_f(hidden_states)
790
+
791
+ hidden_states = hidden_states.view(output_shape)
792
+ # Add last hidden state
793
+ if output_hidden_states:
794
+ all_hidden_states = all_hidden_states + (hidden_states,)
795
+
796
+ if not return_dict:
797
+ return tuple(
798
+ v
799
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
800
+ if v is not None
801
+ )
802
+
803
+ return BaseModelOutputWithPastAndCrossAttentions(
804
+ last_hidden_state=hidden_states,
805
+ past_key_values=presents,
806
+ hidden_states=all_hidden_states,
807
+ attentions=all_self_attentions,
808
+ cross_attentions=all_cross_attentions,
809
+ )
810
+
811
+
812
+ class FLM(FLMPretrainedModel):
813
+ _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
814
+
815
+ def __init__(self, config):
816
+ super().__init__(config)
817
+ self.transformer = FLMTransformer(config)
818
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
819
+ self.use_mup = config.use_mup
820
+ if self.use_mup:
821
+ self.mup_scale_factor = config.mup_scale_factor
822
+ self.output_mult = config.output_mult / self.mup_scale_factor
823
+
824
+ # Model parallel
825
+ self.model_parallel = False
826
+ self.device_map = None
827
+
828
+ # Initialize weights and apply final processing
829
+ self.post_init()
830
+
831
+ def set_max_positions(self, max_positions):
832
+ for layer in self.transformer.h:
833
+ device = layer.ln_1.weight.device
834
+ layer.attn.set_max_positions(max_positions, device=device)
835
+
836
+ def parallelize(self, device_map=None):
837
+ self.device_map = (
838
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
839
+ if device_map is None
840
+ else device_map
841
+ )
842
+ assert_device_map(self.device_map, len(self.transformer.h))
843
+ self.transformer.parallelize(self.device_map)
844
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
845
+ self.model_parallel = True
846
+
847
+ def deparallelize(self):
848
+ self.transformer.deparallelize()
849
+ self.transformer = self.transformer.to("cpu")
850
+ self.lm_head = self.lm_head.to("cpu")
851
+ self.model_parallel = False
852
+ torch.cuda.empty_cache()
853
+
854
+ def get_output_embeddings(self):
855
+ return self.lm_head
856
+
857
+ def set_output_embeddings(self, new_embeddings):
858
+ self.lm_head = new_embeddings
859
+
860
+ def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
861
+ token_type_ids = kwargs.get("token_type_ids", None)
862
+ # only last token for inputs_ids if past is defined in kwargs
863
+ if past:
864
+ input_ids = input_ids[:, -1].unsqueeze(-1)
865
+ if token_type_ids is not None:
866
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
867
+
868
+ attention_mask = kwargs.get("attention_mask", None)
869
+ position_ids = kwargs.get("position_ids", None)
870
+
871
+ if attention_mask is not None and position_ids is None:
872
+ # create position_ids on the fly for batch generation
873
+ position_ids = attention_mask.long().cumsum(-1) - 1
874
+ position_ids.masked_fill_(attention_mask == 0, 1)
875
+ if past:
876
+ position_ids = position_ids[:, -1].unsqueeze(-1)
877
+ else:
878
+ position_ids = None
879
+ return {
880
+ "input_ids": input_ids,
881
+ "past_key_values": past,
882
+ "use_cache": kwargs.get("use_cache"),
883
+ "position_ids": position_ids,
884
+ "attention_mask": attention_mask,
885
+ "token_type_ids": token_type_ids,
886
+ }
887
+
888
+ def forward(
889
+ self,
890
+ input_ids: Optional[torch.LongTensor] = None,
891
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
892
+ attention_mask: Optional[torch.FloatTensor] = None,
893
+ token_type_ids: Optional[torch.LongTensor] = None,
894
+ position_ids: Optional[torch.LongTensor] = None,
895
+ head_mask: Optional[torch.FloatTensor] = None,
896
+ inputs_embeds: Optional[torch.FloatTensor] = None,
897
+ encoder_hidden_states: Optional[torch.Tensor] = None,
898
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
899
+ labels: Optional[torch.LongTensor] = None,
900
+ use_cache: Optional[bool] = None,
901
+ output_attentions: Optional[bool] = None,
902
+ output_hidden_states: Optional[bool] = None,
903
+ return_dict: Optional[bool] = None,
904
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast]:
905
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
906
+
907
+ transformer_outputs = self.transformer(
908
+ input_ids,
909
+ past_key_values=past_key_values,
910
+ attention_mask=attention_mask,
911
+ token_type_ids=token_type_ids,
912
+ position_ids=position_ids,
913
+ head_mask=head_mask,
914
+ inputs_embeds=inputs_embeds,
915
+ encoder_hidden_states=encoder_hidden_states,
916
+ encoder_attention_mask=encoder_attention_mask,
917
+ use_cache=use_cache,
918
+ output_attentions=output_attentions,
919
+ output_hidden_states=output_hidden_states,
920
+ return_dict=return_dict
921
+ )
922
+ hidden_states = transformer_outputs[0]
923
+
924
+ # Set device for model parallelism
925
+ if self.model_parallel:
926
+ torch.cuda.set_device(self.transformer.first_device)
927
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
928
+
929
+ lm_logits = self.lm_head(hidden_states)
930
+ # Mup
931
+ if self.use_mup:
932
+ lm_logits = lm_logits * self.output_mult
933
+
934
+ loss = None
935
+ if labels is not None:
936
+ # Shift so that tokens < n predict n
937
+ shift_logits = lm_logits[..., :-1, :].contiguous()
938
+ shift_labels = labels[..., 1:].contiguous()
939
+ # Flatten the tokens
940
+ loss_fct = nn.CrossEntropyLoss()
941
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
942
+
943
+ if not return_dict:
944
+ output = (lm_logits,) + transformer_outputs[1:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return CausalLMOutputWithCrossAttentions(
948
+ loss=loss,
949
+ logits=lm_logits,
950
+ past_key_values=transformer_outputs.past_key_values,
951
+ hidden_states=transformer_outputs.hidden_states,
952
+ attentions=transformer_outputs.attentions,
953
+ cross_attentions=transformer_outputs.cross_attentions,
954
+ )
pytorch_model-00001-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9e2c9695e2a3fe04b3067055d69faf5acc844fad447595b7f3b0203cdc31f0
3
+ size 9639365909
pytorch_model-00002-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3fb35d432efe84988fba6b3c42c99fd0e5d29075c8c0f53ae982ee5ef535e55
3
+ size 9253654563
pytorch_model-00003-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:354fe82894eb784714d8656abc405be0e11ce8083bb39de3a8e5329caffccab4
3
+ size 9262024111
pytorch_model-00004-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dc627ef3223487a59562a0ec2cc20321169546846787ab2b744e972d239345f
3
+ size 9891189603
pytorch_model-00005-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:650b9c4491b6e36c537430e2938c372a0ebb8bd40c1fe43d2c36f80e0b773023
3
+ size 9471759795
pytorch_model-00006-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f884ca0727c74dacf5d3848f2db7655565285c4dd8ee0c2225b5cc1021db9c
3
+ size 9253654627
pytorch_model-00007-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b9b869f1c22ff677d05e47e3f7fc7931940fede69f935abd021c8c32e81d897
3
+ size 9262024175
pytorch_model-00008-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1698c72d96d2a6e1180535ad12cf7fd9ac6a7bda028899bfbbcb9c82280afbe2
3
+ size 9891189603
pytorch_model-00009-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e065d2a6d2c514e228dcb7584bf6a5d096194d31cd2c6a70cbd72dabd68625
3
+ size 9471759795
pytorch_model-00010-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:480f83a3cba0ed3acff65c023ec50cf8a5f8f1fc64993b4812568fcefa32a4cd
3
+ size 9253654627
pytorch_model-00011-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004fa22a47e6e56c02370cda5daad0c593fa531885d582d9a6dc8ea45707780e
3
+ size 9262024175
pytorch_model-00012-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:701720da23937731d07a636b133a0a80b269753a08f0158b506df29f6664fb4d
3
+ size 9891189603
pytorch_model-00013-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab873f367cd52ef369dee9c2cbbe855562c5c0d2bbb93923fc6b92fa63b4442
3
+ size 9471759795
pytorch_model-00014-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb1ffd9796a55082db31ba8f3ed301cea7db12ffbcc412111ae141334194d772
3
+ size 9253654627
pytorch_model-00015-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5f5820df358c81b6d103dee27e875228a32494e40790449d60aa719d0d9d0a
3
+ size 9262024175
pytorch_model-00016-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c23ec06c1e4079a288f04d9182a31c53bf09cccf5bef8bad249ce1bbb40c671
3
+ size 9891189603
pytorch_model-00017-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2be582fe182b80f9943d9c271377654c3c401158c302a99cb6da67afd66497b5
3
+ size 9471759795
pytorch_model-00018-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:121011d9c151b31a303dec52d929f9f7072c318ef3ed405caeaaee8b95b4f34d
3
+ size 9253654627
pytorch_model-00019-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf41a8c67f850478de690fda435ed8ad49cda96b95854dc241bb876234bc0cb6
3
+ size 9262024175
pytorch_model-00020-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39d64a3505241ca634d82330a9208d95dcb65e499894c3dd857b09394c3b4995
3
+ size 9891189603
pytorch_model-00021-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b93ce871a511a23158e20decee9164981db9bb2c8aa82bcc8a17e21e775880e1
3
+ size 9471759795
pytorch_model-00022-of-00022.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6060cef05f3a10c6395ed8668f0dd3004eb4964df1791c4f6273187f28fe0cae
3
+ size 5042094403
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,1131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 204074229920
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00022.bin",
7
+ "transformer.h.0.attn.bias": "pytorch_model-00001-of-00022.bin",
8
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
9
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
10
+ "transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
11
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
12
+ "transformer.h.0.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
13
+ "transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00022.bin",
14
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00022.bin",
15
+ "transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00022.bin",
16
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00022.bin",
17
+ "transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
18
+ "transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
19
+ "transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
20
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
21
+ "transformer.h.1.attn.bias": "pytorch_model-00001-of-00022.bin",
22
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
23
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
24
+ "transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
25
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
26
+ "transformer.h.1.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
27
+ "transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00022.bin",
28
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00022.bin",
29
+ "transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00022.bin",
30
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00022.bin",
31
+ "transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
32
+ "transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
33
+ "transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
34
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
35
+ "transformer.h.10.attn.bias": "pytorch_model-00003-of-00022.bin",
36
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
37
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
38
+ "transformer.h.10.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
39
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
40
+ "transformer.h.10.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
41
+ "transformer.h.10.ln_1.bias": "pytorch_model-00003-of-00022.bin",
42
+ "transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00022.bin",
43
+ "transformer.h.10.ln_2.bias": "pytorch_model-00003-of-00022.bin",
44
+ "transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00022.bin",
45
+ "transformer.h.10.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
46
+ "transformer.h.10.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
47
+ "transformer.h.10.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
48
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
49
+ "transformer.h.11.attn.bias": "pytorch_model-00004-of-00022.bin",
50
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
51
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
52
+ "transformer.h.11.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
53
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
54
+ "transformer.h.11.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
55
+ "transformer.h.11.ln_1.bias": "pytorch_model-00004-of-00022.bin",
56
+ "transformer.h.11.ln_1.weight": "pytorch_model-00004-of-00022.bin",
57
+ "transformer.h.11.ln_2.bias": "pytorch_model-00004-of-00022.bin",
58
+ "transformer.h.11.ln_2.weight": "pytorch_model-00004-of-00022.bin",
59
+ "transformer.h.11.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
60
+ "transformer.h.11.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
61
+ "transformer.h.11.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
62
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
63
+ "transformer.h.12.attn.bias": "pytorch_model-00004-of-00022.bin",
64
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
65
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
66
+ "transformer.h.12.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
67
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
68
+ "transformer.h.12.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
69
+ "transformer.h.12.ln_1.bias": "pytorch_model-00004-of-00022.bin",
70
+ "transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00022.bin",
71
+ "transformer.h.12.ln_2.bias": "pytorch_model-00004-of-00022.bin",
72
+ "transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00022.bin",
73
+ "transformer.h.12.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
74
+ "transformer.h.12.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
75
+ "transformer.h.12.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
76
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
77
+ "transformer.h.13.attn.bias": "pytorch_model-00004-of-00022.bin",
78
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
79
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
80
+ "transformer.h.13.attn.c_proj.bias": "pytorch_model-00004-of-00022.bin",
81
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00022.bin",
82
+ "transformer.h.13.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
83
+ "transformer.h.13.ln_1.bias": "pytorch_model-00004-of-00022.bin",
84
+ "transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00022.bin",
85
+ "transformer.h.13.ln_2.bias": "pytorch_model-00004-of-00022.bin",
86
+ "transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00022.bin",
87
+ "transformer.h.13.mlp.c_fc.bias": "pytorch_model-00004-of-00022.bin",
88
+ "transformer.h.13.mlp.c_fc.weight": "pytorch_model-00004-of-00022.bin",
89
+ "transformer.h.13.mlp.c_proj.bias": "pytorch_model-00004-of-00022.bin",
90
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00022.bin",
91
+ "transformer.h.14.attn.bias": "pytorch_model-00004-of-00022.bin",
92
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00022.bin",
93
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00022.bin",
94
+ "transformer.h.14.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
95
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
96
+ "transformer.h.14.attn.masked_bias": "pytorch_model-00004-of-00022.bin",
97
+ "transformer.h.14.ln_1.bias": "pytorch_model-00004-of-00022.bin",
98
+ "transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00022.bin",
99
+ "transformer.h.14.ln_2.bias": "pytorch_model-00005-of-00022.bin",
100
+ "transformer.h.14.ln_2.weight": "pytorch_model-00005-of-00022.bin",
101
+ "transformer.h.14.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
102
+ "transformer.h.14.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
103
+ "transformer.h.14.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
104
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
105
+ "transformer.h.15.attn.bias": "pytorch_model-00005-of-00022.bin",
106
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
107
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
108
+ "transformer.h.15.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
109
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
110
+ "transformer.h.15.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
111
+ "transformer.h.15.ln_1.bias": "pytorch_model-00005-of-00022.bin",
112
+ "transformer.h.15.ln_1.weight": "pytorch_model-00005-of-00022.bin",
113
+ "transformer.h.15.ln_2.bias": "pytorch_model-00005-of-00022.bin",
114
+ "transformer.h.15.ln_2.weight": "pytorch_model-00005-of-00022.bin",
115
+ "transformer.h.15.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
116
+ "transformer.h.15.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
117
+ "transformer.h.15.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
118
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
119
+ "transformer.h.16.attn.bias": "pytorch_model-00005-of-00022.bin",
120
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
121
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
122
+ "transformer.h.16.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
123
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
124
+ "transformer.h.16.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
125
+ "transformer.h.16.ln_1.bias": "pytorch_model-00005-of-00022.bin",
126
+ "transformer.h.16.ln_1.weight": "pytorch_model-00005-of-00022.bin",
127
+ "transformer.h.16.ln_2.bias": "pytorch_model-00005-of-00022.bin",
128
+ "transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00022.bin",
129
+ "transformer.h.16.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
130
+ "transformer.h.16.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
131
+ "transformer.h.16.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
132
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
133
+ "transformer.h.17.attn.bias": "pytorch_model-00005-of-00022.bin",
134
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00022.bin",
135
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00022.bin",
136
+ "transformer.h.17.attn.c_proj.bias": "pytorch_model-00005-of-00022.bin",
137
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00022.bin",
138
+ "transformer.h.17.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
139
+ "transformer.h.17.ln_1.bias": "pytorch_model-00005-of-00022.bin",
140
+ "transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00022.bin",
141
+ "transformer.h.17.ln_2.bias": "pytorch_model-00005-of-00022.bin",
142
+ "transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00022.bin",
143
+ "transformer.h.17.mlp.c_fc.bias": "pytorch_model-00005-of-00022.bin",
144
+ "transformer.h.17.mlp.c_fc.weight": "pytorch_model-00005-of-00022.bin",
145
+ "transformer.h.17.mlp.c_proj.bias": "pytorch_model-00005-of-00022.bin",
146
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00022.bin",
147
+ "transformer.h.18.attn.bias": "pytorch_model-00005-of-00022.bin",
148
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
149
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
150
+ "transformer.h.18.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
151
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
152
+ "transformer.h.18.attn.masked_bias": "pytorch_model-00005-of-00022.bin",
153
+ "transformer.h.18.ln_1.bias": "pytorch_model-00005-of-00022.bin",
154
+ "transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00022.bin",
155
+ "transformer.h.18.ln_2.bias": "pytorch_model-00006-of-00022.bin",
156
+ "transformer.h.18.ln_2.weight": "pytorch_model-00006-of-00022.bin",
157
+ "transformer.h.18.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
158
+ "transformer.h.18.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
159
+ "transformer.h.18.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
160
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
161
+ "transformer.h.19.attn.bias": "pytorch_model-00006-of-00022.bin",
162
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
163
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
164
+ "transformer.h.19.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
165
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
166
+ "transformer.h.19.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
167
+ "transformer.h.19.ln_1.bias": "pytorch_model-00006-of-00022.bin",
168
+ "transformer.h.19.ln_1.weight": "pytorch_model-00006-of-00022.bin",
169
+ "transformer.h.19.ln_2.bias": "pytorch_model-00006-of-00022.bin",
170
+ "transformer.h.19.ln_2.weight": "pytorch_model-00006-of-00022.bin",
171
+ "transformer.h.19.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
172
+ "transformer.h.19.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
173
+ "transformer.h.19.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
174
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
175
+ "transformer.h.2.attn.bias": "pytorch_model-00001-of-00022.bin",
176
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00022.bin",
177
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00022.bin",
178
+ "transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00022.bin",
179
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00022.bin",
180
+ "transformer.h.2.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
181
+ "transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00022.bin",
182
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00022.bin",
183
+ "transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00022.bin",
184
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00022.bin",
185
+ "transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00022.bin",
186
+ "transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00022.bin",
187
+ "transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00022.bin",
188
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00022.bin",
189
+ "transformer.h.20.attn.bias": "pytorch_model-00006-of-00022.bin",
190
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
191
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
192
+ "transformer.h.20.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
193
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
194
+ "transformer.h.20.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
195
+ "transformer.h.20.ln_1.bias": "pytorch_model-00006-of-00022.bin",
196
+ "transformer.h.20.ln_1.weight": "pytorch_model-00006-of-00022.bin",
197
+ "transformer.h.20.ln_2.bias": "pytorch_model-00006-of-00022.bin",
198
+ "transformer.h.20.ln_2.weight": "pytorch_model-00006-of-00022.bin",
199
+ "transformer.h.20.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
200
+ "transformer.h.20.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
201
+ "transformer.h.20.mlp.c_proj.bias": "pytorch_model-00006-of-00022.bin",
202
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00006-of-00022.bin",
203
+ "transformer.h.21.attn.bias": "pytorch_model-00006-of-00022.bin",
204
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00022.bin",
205
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00022.bin",
206
+ "transformer.h.21.attn.c_proj.bias": "pytorch_model-00006-of-00022.bin",
207
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00022.bin",
208
+ "transformer.h.21.attn.masked_bias": "pytorch_model-00006-of-00022.bin",
209
+ "transformer.h.21.ln_1.bias": "pytorch_model-00006-of-00022.bin",
210
+ "transformer.h.21.ln_1.weight": "pytorch_model-00006-of-00022.bin",
211
+ "transformer.h.21.ln_2.bias": "pytorch_model-00006-of-00022.bin",
212
+ "transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00022.bin",
213
+ "transformer.h.21.mlp.c_fc.bias": "pytorch_model-00006-of-00022.bin",
214
+ "transformer.h.21.mlp.c_fc.weight": "pytorch_model-00006-of-00022.bin",
215
+ "transformer.h.21.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
216
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
217
+ "transformer.h.22.attn.bias": "pytorch_model-00007-of-00022.bin",
218
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
219
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
220
+ "transformer.h.22.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
221
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
222
+ "transformer.h.22.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
223
+ "transformer.h.22.ln_1.bias": "pytorch_model-00007-of-00022.bin",
224
+ "transformer.h.22.ln_1.weight": "pytorch_model-00007-of-00022.bin",
225
+ "transformer.h.22.ln_2.bias": "pytorch_model-00007-of-00022.bin",
226
+ "transformer.h.22.ln_2.weight": "pytorch_model-00007-of-00022.bin",
227
+ "transformer.h.22.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
228
+ "transformer.h.22.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
229
+ "transformer.h.22.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
230
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
231
+ "transformer.h.23.attn.bias": "pytorch_model-00007-of-00022.bin",
232
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
233
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
234
+ "transformer.h.23.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
235
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
236
+ "transformer.h.23.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
237
+ "transformer.h.23.ln_1.bias": "pytorch_model-00007-of-00022.bin",
238
+ "transformer.h.23.ln_1.weight": "pytorch_model-00007-of-00022.bin",
239
+ "transformer.h.23.ln_2.bias": "pytorch_model-00007-of-00022.bin",
240
+ "transformer.h.23.ln_2.weight": "pytorch_model-00007-of-00022.bin",
241
+ "transformer.h.23.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
242
+ "transformer.h.23.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
243
+ "transformer.h.23.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
244
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
245
+ "transformer.h.24.attn.bias": "pytorch_model-00007-of-00022.bin",
246
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
247
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
248
+ "transformer.h.24.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
249
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
250
+ "transformer.h.24.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
251
+ "transformer.h.24.ln_1.bias": "pytorch_model-00007-of-00022.bin",
252
+ "transformer.h.24.ln_1.weight": "pytorch_model-00007-of-00022.bin",
253
+ "transformer.h.24.ln_2.bias": "pytorch_model-00007-of-00022.bin",
254
+ "transformer.h.24.ln_2.weight": "pytorch_model-00007-of-00022.bin",
255
+ "transformer.h.24.mlp.c_fc.bias": "pytorch_model-00007-of-00022.bin",
256
+ "transformer.h.24.mlp.c_fc.weight": "pytorch_model-00007-of-00022.bin",
257
+ "transformer.h.24.mlp.c_proj.bias": "pytorch_model-00007-of-00022.bin",
258
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00007-of-00022.bin",
259
+ "transformer.h.25.attn.bias": "pytorch_model-00007-of-00022.bin",
260
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00007-of-00022.bin",
261
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00007-of-00022.bin",
262
+ "transformer.h.25.attn.c_proj.bias": "pytorch_model-00007-of-00022.bin",
263
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00007-of-00022.bin",
264
+ "transformer.h.25.attn.masked_bias": "pytorch_model-00007-of-00022.bin",
265
+ "transformer.h.25.ln_1.bias": "pytorch_model-00007-of-00022.bin",
266
+ "transformer.h.25.ln_1.weight": "pytorch_model-00007-of-00022.bin",
267
+ "transformer.h.25.ln_2.bias": "pytorch_model-00007-of-00022.bin",
268
+ "transformer.h.25.ln_2.weight": "pytorch_model-00007-of-00022.bin",
269
+ "transformer.h.25.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
270
+ "transformer.h.25.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
271
+ "transformer.h.25.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
272
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
273
+ "transformer.h.26.attn.bias": "pytorch_model-00008-of-00022.bin",
274
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
275
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
276
+ "transformer.h.26.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
277
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
278
+ "transformer.h.26.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
279
+ "transformer.h.26.ln_1.bias": "pytorch_model-00008-of-00022.bin",
280
+ "transformer.h.26.ln_1.weight": "pytorch_model-00008-of-00022.bin",
281
+ "transformer.h.26.ln_2.bias": "pytorch_model-00008-of-00022.bin",
282
+ "transformer.h.26.ln_2.weight": "pytorch_model-00008-of-00022.bin",
283
+ "transformer.h.26.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
284
+ "transformer.h.26.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
285
+ "transformer.h.26.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
286
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
287
+ "transformer.h.27.attn.bias": "pytorch_model-00008-of-00022.bin",
288
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
289
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
290
+ "transformer.h.27.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
291
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
292
+ "transformer.h.27.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
293
+ "transformer.h.27.ln_1.bias": "pytorch_model-00008-of-00022.bin",
294
+ "transformer.h.27.ln_1.weight": "pytorch_model-00008-of-00022.bin",
295
+ "transformer.h.27.ln_2.bias": "pytorch_model-00008-of-00022.bin",
296
+ "transformer.h.27.ln_2.weight": "pytorch_model-00008-of-00022.bin",
297
+ "transformer.h.27.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
298
+ "transformer.h.27.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
299
+ "transformer.h.27.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
300
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
301
+ "transformer.h.28.attn.bias": "pytorch_model-00008-of-00022.bin",
302
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
303
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
304
+ "transformer.h.28.attn.c_proj.bias": "pytorch_model-00008-of-00022.bin",
305
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00008-of-00022.bin",
306
+ "transformer.h.28.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
307
+ "transformer.h.28.ln_1.bias": "pytorch_model-00008-of-00022.bin",
308
+ "transformer.h.28.ln_1.weight": "pytorch_model-00008-of-00022.bin",
309
+ "transformer.h.28.ln_2.bias": "pytorch_model-00008-of-00022.bin",
310
+ "transformer.h.28.ln_2.weight": "pytorch_model-00008-of-00022.bin",
311
+ "transformer.h.28.mlp.c_fc.bias": "pytorch_model-00008-of-00022.bin",
312
+ "transformer.h.28.mlp.c_fc.weight": "pytorch_model-00008-of-00022.bin",
313
+ "transformer.h.28.mlp.c_proj.bias": "pytorch_model-00008-of-00022.bin",
314
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00008-of-00022.bin",
315
+ "transformer.h.29.attn.bias": "pytorch_model-00008-of-00022.bin",
316
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00008-of-00022.bin",
317
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00008-of-00022.bin",
318
+ "transformer.h.29.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
319
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
320
+ "transformer.h.29.attn.masked_bias": "pytorch_model-00008-of-00022.bin",
321
+ "transformer.h.29.ln_1.bias": "pytorch_model-00008-of-00022.bin",
322
+ "transformer.h.29.ln_1.weight": "pytorch_model-00008-of-00022.bin",
323
+ "transformer.h.29.ln_2.bias": "pytorch_model-00009-of-00022.bin",
324
+ "transformer.h.29.ln_2.weight": "pytorch_model-00009-of-00022.bin",
325
+ "transformer.h.29.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
326
+ "transformer.h.29.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
327
+ "transformer.h.29.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
328
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
329
+ "transformer.h.3.attn.bias": "pytorch_model-00001-of-00022.bin",
330
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
331
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
332
+ "transformer.h.3.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
333
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
334
+ "transformer.h.3.attn.masked_bias": "pytorch_model-00001-of-00022.bin",
335
+ "transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00022.bin",
336
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00022.bin",
337
+ "transformer.h.3.ln_2.bias": "pytorch_model-00002-of-00022.bin",
338
+ "transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00022.bin",
339
+ "transformer.h.3.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
340
+ "transformer.h.3.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
341
+ "transformer.h.3.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
342
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
343
+ "transformer.h.30.attn.bias": "pytorch_model-00009-of-00022.bin",
344
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
345
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
346
+ "transformer.h.30.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
347
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
348
+ "transformer.h.30.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
349
+ "transformer.h.30.ln_1.bias": "pytorch_model-00009-of-00022.bin",
350
+ "transformer.h.30.ln_1.weight": "pytorch_model-00009-of-00022.bin",
351
+ "transformer.h.30.ln_2.bias": "pytorch_model-00009-of-00022.bin",
352
+ "transformer.h.30.ln_2.weight": "pytorch_model-00009-of-00022.bin",
353
+ "transformer.h.30.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
354
+ "transformer.h.30.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
355
+ "transformer.h.30.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
356
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
357
+ "transformer.h.31.attn.bias": "pytorch_model-00009-of-00022.bin",
358
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
359
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
360
+ "transformer.h.31.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
361
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
362
+ "transformer.h.31.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
363
+ "transformer.h.31.ln_1.bias": "pytorch_model-00009-of-00022.bin",
364
+ "transformer.h.31.ln_1.weight": "pytorch_model-00009-of-00022.bin",
365
+ "transformer.h.31.ln_2.bias": "pytorch_model-00009-of-00022.bin",
366
+ "transformer.h.31.ln_2.weight": "pytorch_model-00009-of-00022.bin",
367
+ "transformer.h.31.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
368
+ "transformer.h.31.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
369
+ "transformer.h.31.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
370
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
371
+ "transformer.h.32.attn.bias": "pytorch_model-00009-of-00022.bin",
372
+ "transformer.h.32.attn.c_attn.bias": "pytorch_model-00009-of-00022.bin",
373
+ "transformer.h.32.attn.c_attn.weight": "pytorch_model-00009-of-00022.bin",
374
+ "transformer.h.32.attn.c_proj.bias": "pytorch_model-00009-of-00022.bin",
375
+ "transformer.h.32.attn.c_proj.weight": "pytorch_model-00009-of-00022.bin",
376
+ "transformer.h.32.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
377
+ "transformer.h.32.ln_1.bias": "pytorch_model-00009-of-00022.bin",
378
+ "transformer.h.32.ln_1.weight": "pytorch_model-00009-of-00022.bin",
379
+ "transformer.h.32.ln_2.bias": "pytorch_model-00009-of-00022.bin",
380
+ "transformer.h.32.ln_2.weight": "pytorch_model-00009-of-00022.bin",
381
+ "transformer.h.32.mlp.c_fc.bias": "pytorch_model-00009-of-00022.bin",
382
+ "transformer.h.32.mlp.c_fc.weight": "pytorch_model-00009-of-00022.bin",
383
+ "transformer.h.32.mlp.c_proj.bias": "pytorch_model-00009-of-00022.bin",
384
+ "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00009-of-00022.bin",
385
+ "transformer.h.33.attn.bias": "pytorch_model-00009-of-00022.bin",
386
+ "transformer.h.33.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
387
+ "transformer.h.33.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
388
+ "transformer.h.33.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
389
+ "transformer.h.33.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
390
+ "transformer.h.33.attn.masked_bias": "pytorch_model-00009-of-00022.bin",
391
+ "transformer.h.33.ln_1.bias": "pytorch_model-00009-of-00022.bin",
392
+ "transformer.h.33.ln_1.weight": "pytorch_model-00009-of-00022.bin",
393
+ "transformer.h.33.ln_2.bias": "pytorch_model-00010-of-00022.bin",
394
+ "transformer.h.33.ln_2.weight": "pytorch_model-00010-of-00022.bin",
395
+ "transformer.h.33.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
396
+ "transformer.h.33.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
397
+ "transformer.h.33.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
398
+ "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
399
+ "transformer.h.34.attn.bias": "pytorch_model-00010-of-00022.bin",
400
+ "transformer.h.34.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
401
+ "transformer.h.34.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
402
+ "transformer.h.34.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
403
+ "transformer.h.34.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
404
+ "transformer.h.34.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
405
+ "transformer.h.34.ln_1.bias": "pytorch_model-00010-of-00022.bin",
406
+ "transformer.h.34.ln_1.weight": "pytorch_model-00010-of-00022.bin",
407
+ "transformer.h.34.ln_2.bias": "pytorch_model-00010-of-00022.bin",
408
+ "transformer.h.34.ln_2.weight": "pytorch_model-00010-of-00022.bin",
409
+ "transformer.h.34.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
410
+ "transformer.h.34.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
411
+ "transformer.h.34.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
412
+ "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
413
+ "transformer.h.35.attn.bias": "pytorch_model-00010-of-00022.bin",
414
+ "transformer.h.35.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
415
+ "transformer.h.35.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
416
+ "transformer.h.35.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
417
+ "transformer.h.35.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
418
+ "transformer.h.35.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
419
+ "transformer.h.35.ln_1.bias": "pytorch_model-00010-of-00022.bin",
420
+ "transformer.h.35.ln_1.weight": "pytorch_model-00010-of-00022.bin",
421
+ "transformer.h.35.ln_2.bias": "pytorch_model-00010-of-00022.bin",
422
+ "transformer.h.35.ln_2.weight": "pytorch_model-00010-of-00022.bin",
423
+ "transformer.h.35.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
424
+ "transformer.h.35.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
425
+ "transformer.h.35.mlp.c_proj.bias": "pytorch_model-00010-of-00022.bin",
426
+ "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00010-of-00022.bin",
427
+ "transformer.h.36.attn.bias": "pytorch_model-00010-of-00022.bin",
428
+ "transformer.h.36.attn.c_attn.bias": "pytorch_model-00010-of-00022.bin",
429
+ "transformer.h.36.attn.c_attn.weight": "pytorch_model-00010-of-00022.bin",
430
+ "transformer.h.36.attn.c_proj.bias": "pytorch_model-00010-of-00022.bin",
431
+ "transformer.h.36.attn.c_proj.weight": "pytorch_model-00010-of-00022.bin",
432
+ "transformer.h.36.attn.masked_bias": "pytorch_model-00010-of-00022.bin",
433
+ "transformer.h.36.ln_1.bias": "pytorch_model-00010-of-00022.bin",
434
+ "transformer.h.36.ln_1.weight": "pytorch_model-00010-of-00022.bin",
435
+ "transformer.h.36.ln_2.bias": "pytorch_model-00010-of-00022.bin",
436
+ "transformer.h.36.ln_2.weight": "pytorch_model-00010-of-00022.bin",
437
+ "transformer.h.36.mlp.c_fc.bias": "pytorch_model-00010-of-00022.bin",
438
+ "transformer.h.36.mlp.c_fc.weight": "pytorch_model-00010-of-00022.bin",
439
+ "transformer.h.36.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
440
+ "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
441
+ "transformer.h.37.attn.bias": "pytorch_model-00011-of-00022.bin",
442
+ "transformer.h.37.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
443
+ "transformer.h.37.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
444
+ "transformer.h.37.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
445
+ "transformer.h.37.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
446
+ "transformer.h.37.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
447
+ "transformer.h.37.ln_1.bias": "pytorch_model-00011-of-00022.bin",
448
+ "transformer.h.37.ln_1.weight": "pytorch_model-00011-of-00022.bin",
449
+ "transformer.h.37.ln_2.bias": "pytorch_model-00011-of-00022.bin",
450
+ "transformer.h.37.ln_2.weight": "pytorch_model-00011-of-00022.bin",
451
+ "transformer.h.37.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
452
+ "transformer.h.37.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
453
+ "transformer.h.37.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
454
+ "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
455
+ "transformer.h.38.attn.bias": "pytorch_model-00011-of-00022.bin",
456
+ "transformer.h.38.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
457
+ "transformer.h.38.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
458
+ "transformer.h.38.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
459
+ "transformer.h.38.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
460
+ "transformer.h.38.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
461
+ "transformer.h.38.ln_1.bias": "pytorch_model-00011-of-00022.bin",
462
+ "transformer.h.38.ln_1.weight": "pytorch_model-00011-of-00022.bin",
463
+ "transformer.h.38.ln_2.bias": "pytorch_model-00011-of-00022.bin",
464
+ "transformer.h.38.ln_2.weight": "pytorch_model-00011-of-00022.bin",
465
+ "transformer.h.38.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
466
+ "transformer.h.38.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
467
+ "transformer.h.38.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
468
+ "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
469
+ "transformer.h.39.attn.bias": "pytorch_model-00011-of-00022.bin",
470
+ "transformer.h.39.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
471
+ "transformer.h.39.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
472
+ "transformer.h.39.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
473
+ "transformer.h.39.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
474
+ "transformer.h.39.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
475
+ "transformer.h.39.ln_1.bias": "pytorch_model-00011-of-00022.bin",
476
+ "transformer.h.39.ln_1.weight": "pytorch_model-00011-of-00022.bin",
477
+ "transformer.h.39.ln_2.bias": "pytorch_model-00011-of-00022.bin",
478
+ "transformer.h.39.ln_2.weight": "pytorch_model-00011-of-00022.bin",
479
+ "transformer.h.39.mlp.c_fc.bias": "pytorch_model-00011-of-00022.bin",
480
+ "transformer.h.39.mlp.c_fc.weight": "pytorch_model-00011-of-00022.bin",
481
+ "transformer.h.39.mlp.c_proj.bias": "pytorch_model-00011-of-00022.bin",
482
+ "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00011-of-00022.bin",
483
+ "transformer.h.4.attn.bias": "pytorch_model-00002-of-00022.bin",
484
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
485
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
486
+ "transformer.h.4.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
487
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
488
+ "transformer.h.4.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
489
+ "transformer.h.4.ln_1.bias": "pytorch_model-00002-of-00022.bin",
490
+ "transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00022.bin",
491
+ "transformer.h.4.ln_2.bias": "pytorch_model-00002-of-00022.bin",
492
+ "transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00022.bin",
493
+ "transformer.h.4.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
494
+ "transformer.h.4.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
495
+ "transformer.h.4.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
496
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
497
+ "transformer.h.40.attn.bias": "pytorch_model-00011-of-00022.bin",
498
+ "transformer.h.40.attn.c_attn.bias": "pytorch_model-00011-of-00022.bin",
499
+ "transformer.h.40.attn.c_attn.weight": "pytorch_model-00011-of-00022.bin",
500
+ "transformer.h.40.attn.c_proj.bias": "pytorch_model-00011-of-00022.bin",
501
+ "transformer.h.40.attn.c_proj.weight": "pytorch_model-00011-of-00022.bin",
502
+ "transformer.h.40.attn.masked_bias": "pytorch_model-00011-of-00022.bin",
503
+ "transformer.h.40.ln_1.bias": "pytorch_model-00011-of-00022.bin",
504
+ "transformer.h.40.ln_1.weight": "pytorch_model-00011-of-00022.bin",
505
+ "transformer.h.40.ln_2.bias": "pytorch_model-00011-of-00022.bin",
506
+ "transformer.h.40.ln_2.weight": "pytorch_model-00011-of-00022.bin",
507
+ "transformer.h.40.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
508
+ "transformer.h.40.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
509
+ "transformer.h.40.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
510
+ "transformer.h.40.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
511
+ "transformer.h.41.attn.bias": "pytorch_model-00012-of-00022.bin",
512
+ "transformer.h.41.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
513
+ "transformer.h.41.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
514
+ "transformer.h.41.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
515
+ "transformer.h.41.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
516
+ "transformer.h.41.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
517
+ "transformer.h.41.ln_1.bias": "pytorch_model-00012-of-00022.bin",
518
+ "transformer.h.41.ln_1.weight": "pytorch_model-00012-of-00022.bin",
519
+ "transformer.h.41.ln_2.bias": "pytorch_model-00012-of-00022.bin",
520
+ "transformer.h.41.ln_2.weight": "pytorch_model-00012-of-00022.bin",
521
+ "transformer.h.41.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
522
+ "transformer.h.41.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
523
+ "transformer.h.41.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
524
+ "transformer.h.41.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
525
+ "transformer.h.42.attn.bias": "pytorch_model-00012-of-00022.bin",
526
+ "transformer.h.42.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
527
+ "transformer.h.42.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
528
+ "transformer.h.42.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
529
+ "transformer.h.42.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
530
+ "transformer.h.42.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
531
+ "transformer.h.42.ln_1.bias": "pytorch_model-00012-of-00022.bin",
532
+ "transformer.h.42.ln_1.weight": "pytorch_model-00012-of-00022.bin",
533
+ "transformer.h.42.ln_2.bias": "pytorch_model-00012-of-00022.bin",
534
+ "transformer.h.42.ln_2.weight": "pytorch_model-00012-of-00022.bin",
535
+ "transformer.h.42.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
536
+ "transformer.h.42.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
537
+ "transformer.h.42.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
538
+ "transformer.h.42.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
539
+ "transformer.h.43.attn.bias": "pytorch_model-00012-of-00022.bin",
540
+ "transformer.h.43.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
541
+ "transformer.h.43.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
542
+ "transformer.h.43.attn.c_proj.bias": "pytorch_model-00012-of-00022.bin",
543
+ "transformer.h.43.attn.c_proj.weight": "pytorch_model-00012-of-00022.bin",
544
+ "transformer.h.43.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
545
+ "transformer.h.43.ln_1.bias": "pytorch_model-00012-of-00022.bin",
546
+ "transformer.h.43.ln_1.weight": "pytorch_model-00012-of-00022.bin",
547
+ "transformer.h.43.ln_2.bias": "pytorch_model-00012-of-00022.bin",
548
+ "transformer.h.43.ln_2.weight": "pytorch_model-00012-of-00022.bin",
549
+ "transformer.h.43.mlp.c_fc.bias": "pytorch_model-00012-of-00022.bin",
550
+ "transformer.h.43.mlp.c_fc.weight": "pytorch_model-00012-of-00022.bin",
551
+ "transformer.h.43.mlp.c_proj.bias": "pytorch_model-00012-of-00022.bin",
552
+ "transformer.h.43.mlp.c_proj.weight": "pytorch_model-00012-of-00022.bin",
553
+ "transformer.h.44.attn.bias": "pytorch_model-00012-of-00022.bin",
554
+ "transformer.h.44.attn.c_attn.bias": "pytorch_model-00012-of-00022.bin",
555
+ "transformer.h.44.attn.c_attn.weight": "pytorch_model-00012-of-00022.bin",
556
+ "transformer.h.44.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
557
+ "transformer.h.44.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
558
+ "transformer.h.44.attn.masked_bias": "pytorch_model-00012-of-00022.bin",
559
+ "transformer.h.44.ln_1.bias": "pytorch_model-00012-of-00022.bin",
560
+ "transformer.h.44.ln_1.weight": "pytorch_model-00012-of-00022.bin",
561
+ "transformer.h.44.ln_2.bias": "pytorch_model-00013-of-00022.bin",
562
+ "transformer.h.44.ln_2.weight": "pytorch_model-00013-of-00022.bin",
563
+ "transformer.h.44.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
564
+ "transformer.h.44.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
565
+ "transformer.h.44.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
566
+ "transformer.h.44.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
567
+ "transformer.h.45.attn.bias": "pytorch_model-00013-of-00022.bin",
568
+ "transformer.h.45.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
569
+ "transformer.h.45.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
570
+ "transformer.h.45.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
571
+ "transformer.h.45.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
572
+ "transformer.h.45.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
573
+ "transformer.h.45.ln_1.bias": "pytorch_model-00013-of-00022.bin",
574
+ "transformer.h.45.ln_1.weight": "pytorch_model-00013-of-00022.bin",
575
+ "transformer.h.45.ln_2.bias": "pytorch_model-00013-of-00022.bin",
576
+ "transformer.h.45.ln_2.weight": "pytorch_model-00013-of-00022.bin",
577
+ "transformer.h.45.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
578
+ "transformer.h.45.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
579
+ "transformer.h.45.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
580
+ "transformer.h.45.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
581
+ "transformer.h.46.attn.bias": "pytorch_model-00013-of-00022.bin",
582
+ "transformer.h.46.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
583
+ "transformer.h.46.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
584
+ "transformer.h.46.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
585
+ "transformer.h.46.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
586
+ "transformer.h.46.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
587
+ "transformer.h.46.ln_1.bias": "pytorch_model-00013-of-00022.bin",
588
+ "transformer.h.46.ln_1.weight": "pytorch_model-00013-of-00022.bin",
589
+ "transformer.h.46.ln_2.bias": "pytorch_model-00013-of-00022.bin",
590
+ "transformer.h.46.ln_2.weight": "pytorch_model-00013-of-00022.bin",
591
+ "transformer.h.46.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
592
+ "transformer.h.46.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
593
+ "transformer.h.46.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
594
+ "transformer.h.46.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
595
+ "transformer.h.47.attn.bias": "pytorch_model-00013-of-00022.bin",
596
+ "transformer.h.47.attn.c_attn.bias": "pytorch_model-00013-of-00022.bin",
597
+ "transformer.h.47.attn.c_attn.weight": "pytorch_model-00013-of-00022.bin",
598
+ "transformer.h.47.attn.c_proj.bias": "pytorch_model-00013-of-00022.bin",
599
+ "transformer.h.47.attn.c_proj.weight": "pytorch_model-00013-of-00022.bin",
600
+ "transformer.h.47.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
601
+ "transformer.h.47.ln_1.bias": "pytorch_model-00013-of-00022.bin",
602
+ "transformer.h.47.ln_1.weight": "pytorch_model-00013-of-00022.bin",
603
+ "transformer.h.47.ln_2.bias": "pytorch_model-00013-of-00022.bin",
604
+ "transformer.h.47.ln_2.weight": "pytorch_model-00013-of-00022.bin",
605
+ "transformer.h.47.mlp.c_fc.bias": "pytorch_model-00013-of-00022.bin",
606
+ "transformer.h.47.mlp.c_fc.weight": "pytorch_model-00013-of-00022.bin",
607
+ "transformer.h.47.mlp.c_proj.bias": "pytorch_model-00013-of-00022.bin",
608
+ "transformer.h.47.mlp.c_proj.weight": "pytorch_model-00013-of-00022.bin",
609
+ "transformer.h.48.attn.bias": "pytorch_model-00013-of-00022.bin",
610
+ "transformer.h.48.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
611
+ "transformer.h.48.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
612
+ "transformer.h.48.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
613
+ "transformer.h.48.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
614
+ "transformer.h.48.attn.masked_bias": "pytorch_model-00013-of-00022.bin",
615
+ "transformer.h.48.ln_1.bias": "pytorch_model-00013-of-00022.bin",
616
+ "transformer.h.48.ln_1.weight": "pytorch_model-00013-of-00022.bin",
617
+ "transformer.h.48.ln_2.bias": "pytorch_model-00014-of-00022.bin",
618
+ "transformer.h.48.ln_2.weight": "pytorch_model-00014-of-00022.bin",
619
+ "transformer.h.48.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
620
+ "transformer.h.48.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
621
+ "transformer.h.48.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
622
+ "transformer.h.48.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
623
+ "transformer.h.49.attn.bias": "pytorch_model-00014-of-00022.bin",
624
+ "transformer.h.49.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
625
+ "transformer.h.49.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
626
+ "transformer.h.49.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
627
+ "transformer.h.49.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
628
+ "transformer.h.49.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
629
+ "transformer.h.49.ln_1.bias": "pytorch_model-00014-of-00022.bin",
630
+ "transformer.h.49.ln_1.weight": "pytorch_model-00014-of-00022.bin",
631
+ "transformer.h.49.ln_2.bias": "pytorch_model-00014-of-00022.bin",
632
+ "transformer.h.49.ln_2.weight": "pytorch_model-00014-of-00022.bin",
633
+ "transformer.h.49.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
634
+ "transformer.h.49.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
635
+ "transformer.h.49.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
636
+ "transformer.h.49.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
637
+ "transformer.h.5.attn.bias": "pytorch_model-00002-of-00022.bin",
638
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
639
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
640
+ "transformer.h.5.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
641
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
642
+ "transformer.h.5.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
643
+ "transformer.h.5.ln_1.bias": "pytorch_model-00002-of-00022.bin",
644
+ "transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00022.bin",
645
+ "transformer.h.5.ln_2.bias": "pytorch_model-00002-of-00022.bin",
646
+ "transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00022.bin",
647
+ "transformer.h.5.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
648
+ "transformer.h.5.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
649
+ "transformer.h.5.mlp.c_proj.bias": "pytorch_model-00002-of-00022.bin",
650
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00022.bin",
651
+ "transformer.h.50.attn.bias": "pytorch_model-00014-of-00022.bin",
652
+ "transformer.h.50.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
653
+ "transformer.h.50.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
654
+ "transformer.h.50.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
655
+ "transformer.h.50.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
656
+ "transformer.h.50.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
657
+ "transformer.h.50.ln_1.bias": "pytorch_model-00014-of-00022.bin",
658
+ "transformer.h.50.ln_1.weight": "pytorch_model-00014-of-00022.bin",
659
+ "transformer.h.50.ln_2.bias": "pytorch_model-00014-of-00022.bin",
660
+ "transformer.h.50.ln_2.weight": "pytorch_model-00014-of-00022.bin",
661
+ "transformer.h.50.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
662
+ "transformer.h.50.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
663
+ "transformer.h.50.mlp.c_proj.bias": "pytorch_model-00014-of-00022.bin",
664
+ "transformer.h.50.mlp.c_proj.weight": "pytorch_model-00014-of-00022.bin",
665
+ "transformer.h.51.attn.bias": "pytorch_model-00014-of-00022.bin",
666
+ "transformer.h.51.attn.c_attn.bias": "pytorch_model-00014-of-00022.bin",
667
+ "transformer.h.51.attn.c_attn.weight": "pytorch_model-00014-of-00022.bin",
668
+ "transformer.h.51.attn.c_proj.bias": "pytorch_model-00014-of-00022.bin",
669
+ "transformer.h.51.attn.c_proj.weight": "pytorch_model-00014-of-00022.bin",
670
+ "transformer.h.51.attn.masked_bias": "pytorch_model-00014-of-00022.bin",
671
+ "transformer.h.51.ln_1.bias": "pytorch_model-00014-of-00022.bin",
672
+ "transformer.h.51.ln_1.weight": "pytorch_model-00014-of-00022.bin",
673
+ "transformer.h.51.ln_2.bias": "pytorch_model-00014-of-00022.bin",
674
+ "transformer.h.51.ln_2.weight": "pytorch_model-00014-of-00022.bin",
675
+ "transformer.h.51.mlp.c_fc.bias": "pytorch_model-00014-of-00022.bin",
676
+ "transformer.h.51.mlp.c_fc.weight": "pytorch_model-00014-of-00022.bin",
677
+ "transformer.h.51.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
678
+ "transformer.h.51.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
679
+ "transformer.h.52.attn.bias": "pytorch_model-00015-of-00022.bin",
680
+ "transformer.h.52.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
681
+ "transformer.h.52.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
682
+ "transformer.h.52.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
683
+ "transformer.h.52.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
684
+ "transformer.h.52.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
685
+ "transformer.h.52.ln_1.bias": "pytorch_model-00015-of-00022.bin",
686
+ "transformer.h.52.ln_1.weight": "pytorch_model-00015-of-00022.bin",
687
+ "transformer.h.52.ln_2.bias": "pytorch_model-00015-of-00022.bin",
688
+ "transformer.h.52.ln_2.weight": "pytorch_model-00015-of-00022.bin",
689
+ "transformer.h.52.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
690
+ "transformer.h.52.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
691
+ "transformer.h.52.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
692
+ "transformer.h.52.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
693
+ "transformer.h.53.attn.bias": "pytorch_model-00015-of-00022.bin",
694
+ "transformer.h.53.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
695
+ "transformer.h.53.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
696
+ "transformer.h.53.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
697
+ "transformer.h.53.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
698
+ "transformer.h.53.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
699
+ "transformer.h.53.ln_1.bias": "pytorch_model-00015-of-00022.bin",
700
+ "transformer.h.53.ln_1.weight": "pytorch_model-00015-of-00022.bin",
701
+ "transformer.h.53.ln_2.bias": "pytorch_model-00015-of-00022.bin",
702
+ "transformer.h.53.ln_2.weight": "pytorch_model-00015-of-00022.bin",
703
+ "transformer.h.53.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
704
+ "transformer.h.53.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
705
+ "transformer.h.53.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
706
+ "transformer.h.53.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
707
+ "transformer.h.54.attn.bias": "pytorch_model-00015-of-00022.bin",
708
+ "transformer.h.54.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
709
+ "transformer.h.54.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
710
+ "transformer.h.54.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
711
+ "transformer.h.54.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
712
+ "transformer.h.54.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
713
+ "transformer.h.54.ln_1.bias": "pytorch_model-00015-of-00022.bin",
714
+ "transformer.h.54.ln_1.weight": "pytorch_model-00015-of-00022.bin",
715
+ "transformer.h.54.ln_2.bias": "pytorch_model-00015-of-00022.bin",
716
+ "transformer.h.54.ln_2.weight": "pytorch_model-00015-of-00022.bin",
717
+ "transformer.h.54.mlp.c_fc.bias": "pytorch_model-00015-of-00022.bin",
718
+ "transformer.h.54.mlp.c_fc.weight": "pytorch_model-00015-of-00022.bin",
719
+ "transformer.h.54.mlp.c_proj.bias": "pytorch_model-00015-of-00022.bin",
720
+ "transformer.h.54.mlp.c_proj.weight": "pytorch_model-00015-of-00022.bin",
721
+ "transformer.h.55.attn.bias": "pytorch_model-00015-of-00022.bin",
722
+ "transformer.h.55.attn.c_attn.bias": "pytorch_model-00015-of-00022.bin",
723
+ "transformer.h.55.attn.c_attn.weight": "pytorch_model-00015-of-00022.bin",
724
+ "transformer.h.55.attn.c_proj.bias": "pytorch_model-00015-of-00022.bin",
725
+ "transformer.h.55.attn.c_proj.weight": "pytorch_model-00015-of-00022.bin",
726
+ "transformer.h.55.attn.masked_bias": "pytorch_model-00015-of-00022.bin",
727
+ "transformer.h.55.ln_1.bias": "pytorch_model-00015-of-00022.bin",
728
+ "transformer.h.55.ln_1.weight": "pytorch_model-00015-of-00022.bin",
729
+ "transformer.h.55.ln_2.bias": "pytorch_model-00015-of-00022.bin",
730
+ "transformer.h.55.ln_2.weight": "pytorch_model-00015-of-00022.bin",
731
+ "transformer.h.55.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
732
+ "transformer.h.55.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
733
+ "transformer.h.55.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
734
+ "transformer.h.55.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
735
+ "transformer.h.56.attn.bias": "pytorch_model-00016-of-00022.bin",
736
+ "transformer.h.56.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
737
+ "transformer.h.56.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
738
+ "transformer.h.56.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
739
+ "transformer.h.56.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
740
+ "transformer.h.56.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
741
+ "transformer.h.56.ln_1.bias": "pytorch_model-00016-of-00022.bin",
742
+ "transformer.h.56.ln_1.weight": "pytorch_model-00016-of-00022.bin",
743
+ "transformer.h.56.ln_2.bias": "pytorch_model-00016-of-00022.bin",
744
+ "transformer.h.56.ln_2.weight": "pytorch_model-00016-of-00022.bin",
745
+ "transformer.h.56.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
746
+ "transformer.h.56.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
747
+ "transformer.h.56.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
748
+ "transformer.h.56.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
749
+ "transformer.h.57.attn.bias": "pytorch_model-00016-of-00022.bin",
750
+ "transformer.h.57.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
751
+ "transformer.h.57.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
752
+ "transformer.h.57.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
753
+ "transformer.h.57.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
754
+ "transformer.h.57.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
755
+ "transformer.h.57.ln_1.bias": "pytorch_model-00016-of-00022.bin",
756
+ "transformer.h.57.ln_1.weight": "pytorch_model-00016-of-00022.bin",
757
+ "transformer.h.57.ln_2.bias": "pytorch_model-00016-of-00022.bin",
758
+ "transformer.h.57.ln_2.weight": "pytorch_model-00016-of-00022.bin",
759
+ "transformer.h.57.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
760
+ "transformer.h.57.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
761
+ "transformer.h.57.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
762
+ "transformer.h.57.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
763
+ "transformer.h.58.attn.bias": "pytorch_model-00016-of-00022.bin",
764
+ "transformer.h.58.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
765
+ "transformer.h.58.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
766
+ "transformer.h.58.attn.c_proj.bias": "pytorch_model-00016-of-00022.bin",
767
+ "transformer.h.58.attn.c_proj.weight": "pytorch_model-00016-of-00022.bin",
768
+ "transformer.h.58.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
769
+ "transformer.h.58.ln_1.bias": "pytorch_model-00016-of-00022.bin",
770
+ "transformer.h.58.ln_1.weight": "pytorch_model-00016-of-00022.bin",
771
+ "transformer.h.58.ln_2.bias": "pytorch_model-00016-of-00022.bin",
772
+ "transformer.h.58.ln_2.weight": "pytorch_model-00016-of-00022.bin",
773
+ "transformer.h.58.mlp.c_fc.bias": "pytorch_model-00016-of-00022.bin",
774
+ "transformer.h.58.mlp.c_fc.weight": "pytorch_model-00016-of-00022.bin",
775
+ "transformer.h.58.mlp.c_proj.bias": "pytorch_model-00016-of-00022.bin",
776
+ "transformer.h.58.mlp.c_proj.weight": "pytorch_model-00016-of-00022.bin",
777
+ "transformer.h.59.attn.bias": "pytorch_model-00016-of-00022.bin",
778
+ "transformer.h.59.attn.c_attn.bias": "pytorch_model-00016-of-00022.bin",
779
+ "transformer.h.59.attn.c_attn.weight": "pytorch_model-00016-of-00022.bin",
780
+ "transformer.h.59.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
781
+ "transformer.h.59.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
782
+ "transformer.h.59.attn.masked_bias": "pytorch_model-00016-of-00022.bin",
783
+ "transformer.h.59.ln_1.bias": "pytorch_model-00016-of-00022.bin",
784
+ "transformer.h.59.ln_1.weight": "pytorch_model-00016-of-00022.bin",
785
+ "transformer.h.59.ln_2.bias": "pytorch_model-00017-of-00022.bin",
786
+ "transformer.h.59.ln_2.weight": "pytorch_model-00017-of-00022.bin",
787
+ "transformer.h.59.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
788
+ "transformer.h.59.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
789
+ "transformer.h.59.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
790
+ "transformer.h.59.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
791
+ "transformer.h.6.attn.bias": "pytorch_model-00002-of-00022.bin",
792
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00022.bin",
793
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00022.bin",
794
+ "transformer.h.6.attn.c_proj.bias": "pytorch_model-00002-of-00022.bin",
795
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00022.bin",
796
+ "transformer.h.6.attn.masked_bias": "pytorch_model-00002-of-00022.bin",
797
+ "transformer.h.6.ln_1.bias": "pytorch_model-00002-of-00022.bin",
798
+ "transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00022.bin",
799
+ "transformer.h.6.ln_2.bias": "pytorch_model-00002-of-00022.bin",
800
+ "transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00022.bin",
801
+ "transformer.h.6.mlp.c_fc.bias": "pytorch_model-00002-of-00022.bin",
802
+ "transformer.h.6.mlp.c_fc.weight": "pytorch_model-00002-of-00022.bin",
803
+ "transformer.h.6.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
804
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
805
+ "transformer.h.60.attn.bias": "pytorch_model-00017-of-00022.bin",
806
+ "transformer.h.60.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
807
+ "transformer.h.60.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
808
+ "transformer.h.60.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
809
+ "transformer.h.60.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
810
+ "transformer.h.60.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
811
+ "transformer.h.60.ln_1.bias": "pytorch_model-00017-of-00022.bin",
812
+ "transformer.h.60.ln_1.weight": "pytorch_model-00017-of-00022.bin",
813
+ "transformer.h.60.ln_2.bias": "pytorch_model-00017-of-00022.bin",
814
+ "transformer.h.60.ln_2.weight": "pytorch_model-00017-of-00022.bin",
815
+ "transformer.h.60.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
816
+ "transformer.h.60.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
817
+ "transformer.h.60.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
818
+ "transformer.h.60.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
819
+ "transformer.h.61.attn.bias": "pytorch_model-00017-of-00022.bin",
820
+ "transformer.h.61.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
821
+ "transformer.h.61.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
822
+ "transformer.h.61.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
823
+ "transformer.h.61.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
824
+ "transformer.h.61.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
825
+ "transformer.h.61.ln_1.bias": "pytorch_model-00017-of-00022.bin",
826
+ "transformer.h.61.ln_1.weight": "pytorch_model-00017-of-00022.bin",
827
+ "transformer.h.61.ln_2.bias": "pytorch_model-00017-of-00022.bin",
828
+ "transformer.h.61.ln_2.weight": "pytorch_model-00017-of-00022.bin",
829
+ "transformer.h.61.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
830
+ "transformer.h.61.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
831
+ "transformer.h.61.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
832
+ "transformer.h.61.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
833
+ "transformer.h.62.attn.bias": "pytorch_model-00017-of-00022.bin",
834
+ "transformer.h.62.attn.c_attn.bias": "pytorch_model-00017-of-00022.bin",
835
+ "transformer.h.62.attn.c_attn.weight": "pytorch_model-00017-of-00022.bin",
836
+ "transformer.h.62.attn.c_proj.bias": "pytorch_model-00017-of-00022.bin",
837
+ "transformer.h.62.attn.c_proj.weight": "pytorch_model-00017-of-00022.bin",
838
+ "transformer.h.62.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
839
+ "transformer.h.62.ln_1.bias": "pytorch_model-00017-of-00022.bin",
840
+ "transformer.h.62.ln_1.weight": "pytorch_model-00017-of-00022.bin",
841
+ "transformer.h.62.ln_2.bias": "pytorch_model-00017-of-00022.bin",
842
+ "transformer.h.62.ln_2.weight": "pytorch_model-00017-of-00022.bin",
843
+ "transformer.h.62.mlp.c_fc.bias": "pytorch_model-00017-of-00022.bin",
844
+ "transformer.h.62.mlp.c_fc.weight": "pytorch_model-00017-of-00022.bin",
845
+ "transformer.h.62.mlp.c_proj.bias": "pytorch_model-00017-of-00022.bin",
846
+ "transformer.h.62.mlp.c_proj.weight": "pytorch_model-00017-of-00022.bin",
847
+ "transformer.h.63.attn.bias": "pytorch_model-00017-of-00022.bin",
848
+ "transformer.h.63.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
849
+ "transformer.h.63.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
850
+ "transformer.h.63.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
851
+ "transformer.h.63.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
852
+ "transformer.h.63.attn.masked_bias": "pytorch_model-00017-of-00022.bin",
853
+ "transformer.h.63.ln_1.bias": "pytorch_model-00017-of-00022.bin",
854
+ "transformer.h.63.ln_1.weight": "pytorch_model-00017-of-00022.bin",
855
+ "transformer.h.63.ln_2.bias": "pytorch_model-00018-of-00022.bin",
856
+ "transformer.h.63.ln_2.weight": "pytorch_model-00018-of-00022.bin",
857
+ "transformer.h.63.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
858
+ "transformer.h.63.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
859
+ "transformer.h.63.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
860
+ "transformer.h.63.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
861
+ "transformer.h.64.attn.bias": "pytorch_model-00018-of-00022.bin",
862
+ "transformer.h.64.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
863
+ "transformer.h.64.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
864
+ "transformer.h.64.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
865
+ "transformer.h.64.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
866
+ "transformer.h.64.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
867
+ "transformer.h.64.ln_1.bias": "pytorch_model-00018-of-00022.bin",
868
+ "transformer.h.64.ln_1.weight": "pytorch_model-00018-of-00022.bin",
869
+ "transformer.h.64.ln_2.bias": "pytorch_model-00018-of-00022.bin",
870
+ "transformer.h.64.ln_2.weight": "pytorch_model-00018-of-00022.bin",
871
+ "transformer.h.64.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
872
+ "transformer.h.64.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
873
+ "transformer.h.64.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
874
+ "transformer.h.64.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
875
+ "transformer.h.65.attn.bias": "pytorch_model-00018-of-00022.bin",
876
+ "transformer.h.65.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
877
+ "transformer.h.65.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
878
+ "transformer.h.65.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
879
+ "transformer.h.65.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
880
+ "transformer.h.65.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
881
+ "transformer.h.65.ln_1.bias": "pytorch_model-00018-of-00022.bin",
882
+ "transformer.h.65.ln_1.weight": "pytorch_model-00018-of-00022.bin",
883
+ "transformer.h.65.ln_2.bias": "pytorch_model-00018-of-00022.bin",
884
+ "transformer.h.65.ln_2.weight": "pytorch_model-00018-of-00022.bin",
885
+ "transformer.h.65.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
886
+ "transformer.h.65.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
887
+ "transformer.h.65.mlp.c_proj.bias": "pytorch_model-00018-of-00022.bin",
888
+ "transformer.h.65.mlp.c_proj.weight": "pytorch_model-00018-of-00022.bin",
889
+ "transformer.h.66.attn.bias": "pytorch_model-00018-of-00022.bin",
890
+ "transformer.h.66.attn.c_attn.bias": "pytorch_model-00018-of-00022.bin",
891
+ "transformer.h.66.attn.c_attn.weight": "pytorch_model-00018-of-00022.bin",
892
+ "transformer.h.66.attn.c_proj.bias": "pytorch_model-00018-of-00022.bin",
893
+ "transformer.h.66.attn.c_proj.weight": "pytorch_model-00018-of-00022.bin",
894
+ "transformer.h.66.attn.masked_bias": "pytorch_model-00018-of-00022.bin",
895
+ "transformer.h.66.ln_1.bias": "pytorch_model-00018-of-00022.bin",
896
+ "transformer.h.66.ln_1.weight": "pytorch_model-00018-of-00022.bin",
897
+ "transformer.h.66.ln_2.bias": "pytorch_model-00018-of-00022.bin",
898
+ "transformer.h.66.ln_2.weight": "pytorch_model-00018-of-00022.bin",
899
+ "transformer.h.66.mlp.c_fc.bias": "pytorch_model-00018-of-00022.bin",
900
+ "transformer.h.66.mlp.c_fc.weight": "pytorch_model-00018-of-00022.bin",
901
+ "transformer.h.66.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
902
+ "transformer.h.66.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
903
+ "transformer.h.67.attn.bias": "pytorch_model-00019-of-00022.bin",
904
+ "transformer.h.67.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
905
+ "transformer.h.67.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
906
+ "transformer.h.67.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
907
+ "transformer.h.67.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
908
+ "transformer.h.67.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
909
+ "transformer.h.67.ln_1.bias": "pytorch_model-00019-of-00022.bin",
910
+ "transformer.h.67.ln_1.weight": "pytorch_model-00019-of-00022.bin",
911
+ "transformer.h.67.ln_2.bias": "pytorch_model-00019-of-00022.bin",
912
+ "transformer.h.67.ln_2.weight": "pytorch_model-00019-of-00022.bin",
913
+ "transformer.h.67.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
914
+ "transformer.h.67.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
915
+ "transformer.h.67.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
916
+ "transformer.h.67.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
917
+ "transformer.h.68.attn.bias": "pytorch_model-00019-of-00022.bin",
918
+ "transformer.h.68.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
919
+ "transformer.h.68.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
920
+ "transformer.h.68.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
921
+ "transformer.h.68.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
922
+ "transformer.h.68.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
923
+ "transformer.h.68.ln_1.bias": "pytorch_model-00019-of-00022.bin",
924
+ "transformer.h.68.ln_1.weight": "pytorch_model-00019-of-00022.bin",
925
+ "transformer.h.68.ln_2.bias": "pytorch_model-00019-of-00022.bin",
926
+ "transformer.h.68.ln_2.weight": "pytorch_model-00019-of-00022.bin",
927
+ "transformer.h.68.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
928
+ "transformer.h.68.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
929
+ "transformer.h.68.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
930
+ "transformer.h.68.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
931
+ "transformer.h.69.attn.bias": "pytorch_model-00019-of-00022.bin",
932
+ "transformer.h.69.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
933
+ "transformer.h.69.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
934
+ "transformer.h.69.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
935
+ "transformer.h.69.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
936
+ "transformer.h.69.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
937
+ "transformer.h.69.ln_1.bias": "pytorch_model-00019-of-00022.bin",
938
+ "transformer.h.69.ln_1.weight": "pytorch_model-00019-of-00022.bin",
939
+ "transformer.h.69.ln_2.bias": "pytorch_model-00019-of-00022.bin",
940
+ "transformer.h.69.ln_2.weight": "pytorch_model-00019-of-00022.bin",
941
+ "transformer.h.69.mlp.c_fc.bias": "pytorch_model-00019-of-00022.bin",
942
+ "transformer.h.69.mlp.c_fc.weight": "pytorch_model-00019-of-00022.bin",
943
+ "transformer.h.69.mlp.c_proj.bias": "pytorch_model-00019-of-00022.bin",
944
+ "transformer.h.69.mlp.c_proj.weight": "pytorch_model-00019-of-00022.bin",
945
+ "transformer.h.7.attn.bias": "pytorch_model-00003-of-00022.bin",
946
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
947
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
948
+ "transformer.h.7.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
949
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
950
+ "transformer.h.7.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
951
+ "transformer.h.7.ln_1.bias": "pytorch_model-00003-of-00022.bin",
952
+ "transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00022.bin",
953
+ "transformer.h.7.ln_2.bias": "pytorch_model-00003-of-00022.bin",
954
+ "transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00022.bin",
955
+ "transformer.h.7.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
956
+ "transformer.h.7.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
957
+ "transformer.h.7.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
958
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
959
+ "transformer.h.70.attn.bias": "pytorch_model-00019-of-00022.bin",
960
+ "transformer.h.70.attn.c_attn.bias": "pytorch_model-00019-of-00022.bin",
961
+ "transformer.h.70.attn.c_attn.weight": "pytorch_model-00019-of-00022.bin",
962
+ "transformer.h.70.attn.c_proj.bias": "pytorch_model-00019-of-00022.bin",
963
+ "transformer.h.70.attn.c_proj.weight": "pytorch_model-00019-of-00022.bin",
964
+ "transformer.h.70.attn.masked_bias": "pytorch_model-00019-of-00022.bin",
965
+ "transformer.h.70.ln_1.bias": "pytorch_model-00019-of-00022.bin",
966
+ "transformer.h.70.ln_1.weight": "pytorch_model-00019-of-00022.bin",
967
+ "transformer.h.70.ln_2.bias": "pytorch_model-00019-of-00022.bin",
968
+ "transformer.h.70.ln_2.weight": "pytorch_model-00019-of-00022.bin",
969
+ "transformer.h.70.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
970
+ "transformer.h.70.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
971
+ "transformer.h.70.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
972
+ "transformer.h.70.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
973
+ "transformer.h.71.attn.bias": "pytorch_model-00020-of-00022.bin",
974
+ "transformer.h.71.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
975
+ "transformer.h.71.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
976
+ "transformer.h.71.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
977
+ "transformer.h.71.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
978
+ "transformer.h.71.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
979
+ "transformer.h.71.ln_1.bias": "pytorch_model-00020-of-00022.bin",
980
+ "transformer.h.71.ln_1.weight": "pytorch_model-00020-of-00022.bin",
981
+ "transformer.h.71.ln_2.bias": "pytorch_model-00020-of-00022.bin",
982
+ "transformer.h.71.ln_2.weight": "pytorch_model-00020-of-00022.bin",
983
+ "transformer.h.71.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
984
+ "transformer.h.71.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
985
+ "transformer.h.71.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
986
+ "transformer.h.71.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
987
+ "transformer.h.72.attn.bias": "pytorch_model-00020-of-00022.bin",
988
+ "transformer.h.72.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
989
+ "transformer.h.72.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
990
+ "transformer.h.72.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
991
+ "transformer.h.72.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
992
+ "transformer.h.72.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
993
+ "transformer.h.72.ln_1.bias": "pytorch_model-00020-of-00022.bin",
994
+ "transformer.h.72.ln_1.weight": "pytorch_model-00020-of-00022.bin",
995
+ "transformer.h.72.ln_2.bias": "pytorch_model-00020-of-00022.bin",
996
+ "transformer.h.72.ln_2.weight": "pytorch_model-00020-of-00022.bin",
997
+ "transformer.h.72.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
998
+ "transformer.h.72.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
999
+ "transformer.h.72.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
1000
+ "transformer.h.72.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
1001
+ "transformer.h.73.attn.bias": "pytorch_model-00020-of-00022.bin",
1002
+ "transformer.h.73.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
1003
+ "transformer.h.73.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
1004
+ "transformer.h.73.attn.c_proj.bias": "pytorch_model-00020-of-00022.bin",
1005
+ "transformer.h.73.attn.c_proj.weight": "pytorch_model-00020-of-00022.bin",
1006
+ "transformer.h.73.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
1007
+ "transformer.h.73.ln_1.bias": "pytorch_model-00020-of-00022.bin",
1008
+ "transformer.h.73.ln_1.weight": "pytorch_model-00020-of-00022.bin",
1009
+ "transformer.h.73.ln_2.bias": "pytorch_model-00020-of-00022.bin",
1010
+ "transformer.h.73.ln_2.weight": "pytorch_model-00020-of-00022.bin",
1011
+ "transformer.h.73.mlp.c_fc.bias": "pytorch_model-00020-of-00022.bin",
1012
+ "transformer.h.73.mlp.c_fc.weight": "pytorch_model-00020-of-00022.bin",
1013
+ "transformer.h.73.mlp.c_proj.bias": "pytorch_model-00020-of-00022.bin",
1014
+ "transformer.h.73.mlp.c_proj.weight": "pytorch_model-00020-of-00022.bin",
1015
+ "transformer.h.74.attn.bias": "pytorch_model-00020-of-00022.bin",
1016
+ "transformer.h.74.attn.c_attn.bias": "pytorch_model-00020-of-00022.bin",
1017
+ "transformer.h.74.attn.c_attn.weight": "pytorch_model-00020-of-00022.bin",
1018
+ "transformer.h.74.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1019
+ "transformer.h.74.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1020
+ "transformer.h.74.attn.masked_bias": "pytorch_model-00020-of-00022.bin",
1021
+ "transformer.h.74.ln_1.bias": "pytorch_model-00020-of-00022.bin",
1022
+ "transformer.h.74.ln_1.weight": "pytorch_model-00020-of-00022.bin",
1023
+ "transformer.h.74.ln_2.bias": "pytorch_model-00021-of-00022.bin",
1024
+ "transformer.h.74.ln_2.weight": "pytorch_model-00021-of-00022.bin",
1025
+ "transformer.h.74.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
1026
+ "transformer.h.74.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
1027
+ "transformer.h.74.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1028
+ "transformer.h.74.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1029
+ "transformer.h.75.attn.bias": "pytorch_model-00021-of-00022.bin",
1030
+ "transformer.h.75.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
1031
+ "transformer.h.75.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
1032
+ "transformer.h.75.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1033
+ "transformer.h.75.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1034
+ "transformer.h.75.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
1035
+ "transformer.h.75.ln_1.bias": "pytorch_model-00021-of-00022.bin",
1036
+ "transformer.h.75.ln_1.weight": "pytorch_model-00021-of-00022.bin",
1037
+ "transformer.h.75.ln_2.bias": "pytorch_model-00021-of-00022.bin",
1038
+ "transformer.h.75.ln_2.weight": "pytorch_model-00021-of-00022.bin",
1039
+ "transformer.h.75.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
1040
+ "transformer.h.75.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
1041
+ "transformer.h.75.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1042
+ "transformer.h.75.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1043
+ "transformer.h.76.attn.bias": "pytorch_model-00021-of-00022.bin",
1044
+ "transformer.h.76.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
1045
+ "transformer.h.76.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
1046
+ "transformer.h.76.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1047
+ "transformer.h.76.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1048
+ "transformer.h.76.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
1049
+ "transformer.h.76.ln_1.bias": "pytorch_model-00021-of-00022.bin",
1050
+ "transformer.h.76.ln_1.weight": "pytorch_model-00021-of-00022.bin",
1051
+ "transformer.h.76.ln_2.bias": "pytorch_model-00021-of-00022.bin",
1052
+ "transformer.h.76.ln_2.weight": "pytorch_model-00021-of-00022.bin",
1053
+ "transformer.h.76.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
1054
+ "transformer.h.76.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
1055
+ "transformer.h.76.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1056
+ "transformer.h.76.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1057
+ "transformer.h.77.attn.bias": "pytorch_model-00021-of-00022.bin",
1058
+ "transformer.h.77.attn.c_attn.bias": "pytorch_model-00021-of-00022.bin",
1059
+ "transformer.h.77.attn.c_attn.weight": "pytorch_model-00021-of-00022.bin",
1060
+ "transformer.h.77.attn.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1061
+ "transformer.h.77.attn.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1062
+ "transformer.h.77.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
1063
+ "transformer.h.77.ln_1.bias": "pytorch_model-00021-of-00022.bin",
1064
+ "transformer.h.77.ln_1.weight": "pytorch_model-00021-of-00022.bin",
1065
+ "transformer.h.77.ln_2.bias": "pytorch_model-00021-of-00022.bin",
1066
+ "transformer.h.77.ln_2.weight": "pytorch_model-00021-of-00022.bin",
1067
+ "transformer.h.77.mlp.c_fc.bias": "pytorch_model-00021-of-00022.bin",
1068
+ "transformer.h.77.mlp.c_fc.weight": "pytorch_model-00021-of-00022.bin",
1069
+ "transformer.h.77.mlp.c_proj.bias": "pytorch_model-00021-of-00022.bin",
1070
+ "transformer.h.77.mlp.c_proj.weight": "pytorch_model-00021-of-00022.bin",
1071
+ "transformer.h.78.attn.bias": "pytorch_model-00021-of-00022.bin",
1072
+ "transformer.h.78.attn.c_attn.bias": "pytorch_model-00022-of-00022.bin",
1073
+ "transformer.h.78.attn.c_attn.weight": "pytorch_model-00022-of-00022.bin",
1074
+ "transformer.h.78.attn.c_proj.bias": "pytorch_model-00022-of-00022.bin",
1075
+ "transformer.h.78.attn.c_proj.weight": "pytorch_model-00022-of-00022.bin",
1076
+ "transformer.h.78.attn.masked_bias": "pytorch_model-00021-of-00022.bin",
1077
+ "transformer.h.78.ln_1.bias": "pytorch_model-00021-of-00022.bin",
1078
+ "transformer.h.78.ln_1.weight": "pytorch_model-00021-of-00022.bin",
1079
+ "transformer.h.78.ln_2.bias": "pytorch_model-00022-of-00022.bin",
1080
+ "transformer.h.78.ln_2.weight": "pytorch_model-00022-of-00022.bin",
1081
+ "transformer.h.78.mlp.c_fc.bias": "pytorch_model-00022-of-00022.bin",
1082
+ "transformer.h.78.mlp.c_fc.weight": "pytorch_model-00022-of-00022.bin",
1083
+ "transformer.h.78.mlp.c_proj.bias": "pytorch_model-00022-of-00022.bin",
1084
+ "transformer.h.78.mlp.c_proj.weight": "pytorch_model-00022-of-00022.bin",
1085
+ "transformer.h.79.attn.bias": "pytorch_model-00022-of-00022.bin",
1086
+ "transformer.h.79.attn.c_attn.bias": "pytorch_model-00022-of-00022.bin",
1087
+ "transformer.h.79.attn.c_attn.weight": "pytorch_model-00022-of-00022.bin",
1088
+ "transformer.h.79.attn.c_proj.bias": "pytorch_model-00022-of-00022.bin",
1089
+ "transformer.h.79.attn.c_proj.weight": "pytorch_model-00022-of-00022.bin",
1090
+ "transformer.h.79.attn.masked_bias": "pytorch_model-00022-of-00022.bin",
1091
+ "transformer.h.79.ln_1.bias": "pytorch_model-00022-of-00022.bin",
1092
+ "transformer.h.79.ln_1.weight": "pytorch_model-00022-of-00022.bin",
1093
+ "transformer.h.79.ln_2.bias": "pytorch_model-00022-of-00022.bin",
1094
+ "transformer.h.79.ln_2.weight": "pytorch_model-00022-of-00022.bin",
1095
+ "transformer.h.79.mlp.c_fc.bias": "pytorch_model-00022-of-00022.bin",
1096
+ "transformer.h.79.mlp.c_fc.weight": "pytorch_model-00022-of-00022.bin",
1097
+ "transformer.h.79.mlp.c_proj.bias": "pytorch_model-00022-of-00022.bin",
1098
+ "transformer.h.79.mlp.c_proj.weight": "pytorch_model-00022-of-00022.bin",
1099
+ "transformer.h.8.attn.bias": "pytorch_model-00003-of-00022.bin",
1100
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
1101
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
1102
+ "transformer.h.8.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
1103
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
1104
+ "transformer.h.8.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
1105
+ "transformer.h.8.ln_1.bias": "pytorch_model-00003-of-00022.bin",
1106
+ "transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00022.bin",
1107
+ "transformer.h.8.ln_2.bias": "pytorch_model-00003-of-00022.bin",
1108
+ "transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00022.bin",
1109
+ "transformer.h.8.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
1110
+ "transformer.h.8.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
1111
+ "transformer.h.8.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
1112
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
1113
+ "transformer.h.9.attn.bias": "pytorch_model-00003-of-00022.bin",
1114
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00022.bin",
1115
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00022.bin",
1116
+ "transformer.h.9.attn.c_proj.bias": "pytorch_model-00003-of-00022.bin",
1117
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00022.bin",
1118
+ "transformer.h.9.attn.masked_bias": "pytorch_model-00003-of-00022.bin",
1119
+ "transformer.h.9.ln_1.bias": "pytorch_model-00003-of-00022.bin",
1120
+ "transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00022.bin",
1121
+ "transformer.h.9.ln_2.bias": "pytorch_model-00003-of-00022.bin",
1122
+ "transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00022.bin",
1123
+ "transformer.h.9.mlp.c_fc.bias": "pytorch_model-00003-of-00022.bin",
1124
+ "transformer.h.9.mlp.c_fc.weight": "pytorch_model-00003-of-00022.bin",
1125
+ "transformer.h.9.mlp.c_proj.bias": "pytorch_model-00003-of-00022.bin",
1126
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00022.bin",
1127
+ "transformer.ln_f.bias": "pytorch_model-00022-of-00022.bin",
1128
+ "transformer.ln_f.weight": "pytorch_model-00022-of-00022.bin",
1129
+ "transformer.wte.weight": "pytorch_model-00001-of-00022.bin"
1130
+ }
1131
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[tsk]"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "cls_token": "[cls]",
13
+ "eos_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": "[pad]",
21
+ "sep_token": "[sep]",
22
+ "unk_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
tokenization_freelm.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPT2Tokenizer
2
+
3
+ class FLMTokenizer(GPT2Tokenizer):
4
+ model_input_names = ["input_ids", "attention_mask"]
5
+ def __init__(
6
+ self,
7
+ vocab_file,
8
+ merges_file,
9
+ errors="replace",
10
+ unk_token="<|endoftext|>",
11
+ bos_token="<|endoftext|>",
12
+ eos_token="<|endoftext|>",
13
+ pad_token=None,
14
+ add_prefix_space=False,
15
+ add_bos_token=False,
16
+ **kwargs,
17
+ ):
18
+ super().__init__(
19
+ vocab_file,
20
+ merges_file,
21
+ errors=errors,
22
+ unk_token=unk_token,
23
+ bos_token=bos_token,
24
+ eos_token=eos_token,
25
+ pad_token=pad_token,
26
+ add_prefix_space=add_prefix_space,
27
+ add_bos_token=add_bos_token,
28
+ **kwargs,
29
+ )
30
+ self.pat = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_freelm.FLMTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "do_lower_case": false,
20
+ "eos_token": {
21
+ "__type": "AddedToken",
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "errors": "replace",
29
+ "model_max_length": 1000000000000000019884624838656,
30
+ "pad_token": null,
31
+ "tokenizer_class": "FLMTokenizer",
32
+ "unk_token": {
33
+ "__type": "AddedToken",
34
+ "content": "<|endoftext|>",
35
+ "lstrip": false,
36
+ "normalized": true,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "use_fast": false
41
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff