Commit
•
6725bc1
1
Parent(s):
baf7215
update README.md more details (#2)
Browse files- update README.md more details (e2c6c74fec3efc5a75ab9d98968590ead055441f)
Co-authored-by: Daniel Avila Arias <DanielSan7@users.noreply.huggingface.co>
README.md
CHANGED
@@ -109,10 +109,59 @@ special_tokens:
|
|
109 |
|
110 |
# deepseek-coder-1.3b-typescript
|
111 |
|
112 |
-
|
|
|
|
|
|
|
113 |
It achieves the following results on the evaluation set:
|
114 |
- Loss: 0.7681
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
## Training procedure
|
117 |
|
118 |
### Training hyperparameters
|
|
|
109 |
|
110 |
# deepseek-coder-1.3b-typescript
|
111 |
|
112 |
+
CodeGPTPlus/deepseek-coder-1.3b-typescript, emerges as a fine-tuned iteration of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base), meticulously crafted by the CodeGPT team to excel in generating expert code in TypeScript. With specific fine-tuning for TypeScript and a dataset of 0.5B tokens, this model excels in producing precise and efficient solutions in this programming language.
|
113 |
+
The 16K window size and an additional fill-in-the-middle task are employed to deliver project-level code completion.
|
114 |
+
This new model stands as the ideal choice for those seeking a specialized code generator for TypeScript, backed by the expertise of the CodeGPT team.
|
115 |
+
|
116 |
It achieves the following results on the evaluation set:
|
117 |
- Loss: 0.7681
|
118 |
|
119 |
+
**Model Developers** CodeGPT Team
|
120 |
+
**Variations** 1.3B
|
121 |
+
**Input** Models input text only.
|
122 |
+
**Output** Models generate text only.
|
123 |
+
|
124 |
+
## How to Use
|
125 |
+
This model is for completion purposes only. Here give some examples of how to use the model.
|
126 |
+
|
127 |
+
#### Running the model on a GPU
|
128 |
+
```python
|
129 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained("CodeGPTPlus/deepseek-coder-1.3b-typescript",
|
131 |
+
trust_remote_code=True)
|
132 |
+
model = AutoModelForCausalLM.from_pretrained("CodeGPTPlus/deepseek-coder-1.3b-typescript",
|
133 |
+
trust_remote_code=True).cuda()
|
134 |
+
|
135 |
+
input_text = """<|fim▁begin|>function quickSort(arr: number[]): number[] {
|
136 |
+
if (arr.length <= 1) {
|
137 |
+
return arr;
|
138 |
+
}
|
139 |
+
const pivot = arr[0];
|
140 |
+
const left = [];
|
141 |
+
const right = [];
|
142 |
+
<|fim▁hole|>
|
143 |
+
return [...quickSort(left), pivot, ...quickSort(right)];
|
144 |
+
}<|fim▁end|>"""
|
145 |
+
|
146 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
147 |
+
outputs = model.generate(**inputs, max_length=256)
|
148 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
149 |
+
```
|
150 |
+
|
151 |
+
### Fill In the Middle (FIM)
|
152 |
+
```python
|
153 |
+
<|fim▁begin|>function quickSort(arr: number[]): number[] {
|
154 |
+
if (arr.length <= 1) {
|
155 |
+
return arr;
|
156 |
+
}
|
157 |
+
const pivot = arr[0];
|
158 |
+
const left = [];
|
159 |
+
const right = [];
|
160 |
+
<|fim▁hole|>
|
161 |
+
return [...quickSort(left), pivot, ...quickSort(right)];
|
162 |
+
}<|fim▁end|>
|
163 |
+
```
|
164 |
+
|
165 |
## Training procedure
|
166 |
|
167 |
### Training hyperparameters
|