finetuned_bart_mnli / README.md
CoCoRooXin's picture
./finetuned_bart
ef2ff0c verified
|
raw
history blame
4.77 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: facebook/bart-large-mnli
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of facebook/bart-large-mnli on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • F1: 0.9412
  • Precision: 0.9524
  • Recall: 0.9302
  • Accuracy: 0.9333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.5809 0.14 10 0.3912 0.8671 0.8621 0.8721 0.8467
0.3659 0.28 20 0.3689 0.8790 0.9718 0.8023 0.8733
0.3805 0.42 30 0.2890 0.9133 0.9080 0.9186 0.9
0.4068 0.56 40 0.3249 0.9068 0.9733 0.8488 0.9
0.3183 0.69 50 0.2801 0.9133 0.9080 0.9186 0.9
0.1929 0.83 60 0.2832 0.9123 0.9176 0.9070 0.9
0.2861 0.97 70 0.2883 0.9195 0.9091 0.9302 0.9067
0.209 1.11 80 0.3000 0.9222 0.9506 0.8953 0.9133
0.2192 1.25 90 0.2845 0.9176 0.9286 0.9070 0.9067
0.3116 1.39 100 0.2520 0.9249 0.9195 0.9302 0.9133
0.2512 1.53 110 0.2650 0.9222 0.9506 0.8953 0.9133
0.1774 1.67 120 0.2571 0.9231 0.9398 0.9070 0.9133
0.1126 1.81 130 0.2668 0.9364 0.9310 0.9419 0.9267
0.2379 1.94 140 0.3075 0.9012 0.9605 0.8488 0.8933
0.2753 2.08 150 0.2254 0.9240 0.9294 0.9186 0.9133
0.1727 2.22 160 0.2707 0.9310 0.9205 0.9419 0.92
0.224 2.36 170 0.3118 0.9057 0.9863 0.8372 0.9
0.2056 2.5 180 0.2673 0.9302 0.9302 0.9302 0.92
0.2274 2.64 190 0.2515 0.9302 0.9302 0.9302 0.92
0.1193 2.78 200 0.2250 0.9357 0.9412 0.9302 0.9267
0.2806 2.92 210 0.2268 0.9286 0.9512 0.9070 0.92
0.1272 3.06 220 0.2031 0.9349 0.9518 0.9186 0.9267
0.1879 3.19 230 0.1730 0.9480 0.9425 0.9535 0.94
0.1341 3.33 240 0.1867 0.9419 0.9419 0.9419 0.9333
0.1376 3.47 250 0.2628 0.9341 0.9630 0.9070 0.9267
0.1599 3.61 260 0.2484 0.9405 0.9634 0.9186 0.9333
0.1899 3.75 270 0.1847 0.9480 0.9425 0.9535 0.94
0.0828 3.89 280 0.1869 0.9412 0.9524 0.9302 0.9333
0.1025 4.03 290 0.1876 0.9349 0.9518 0.9186 0.9267
0.118 4.17 300 0.1811 0.9419 0.9419 0.9419 0.9333
0.1475 4.31 310 0.1901 0.9294 0.9405 0.9186 0.92
0.1354 4.44 320 0.1805 0.9357 0.9412 0.9302 0.9267
0.1444 4.58 330 0.1706 0.9540 0.9432 0.9651 0.9467
0.1068 4.72 340 0.1693 0.9480 0.9425 0.9535 0.94
0.0875 4.86 350 0.1715 0.9412 0.9524 0.9302 0.9333
0.0922 5.0 360 0.1726 0.9412 0.9524 0.9302 0.9333

Framework versions

  • PEFT 0.9.0
  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2