metadata
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/bart-large-mnli
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: results
results: []
results
This model is a fine-tuned version of facebook/bart-large-mnli on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1726
- F1: 0.9412
- Precision: 0.9524
- Recall: 0.9302
- Accuracy: 0.9333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|---|---|---|
0.5809 | 0.14 | 10 | 0.3912 | 0.8671 | 0.8621 | 0.8721 | 0.8467 |
0.3659 | 0.28 | 20 | 0.3689 | 0.8790 | 0.9718 | 0.8023 | 0.8733 |
0.3805 | 0.42 | 30 | 0.2890 | 0.9133 | 0.9080 | 0.9186 | 0.9 |
0.4068 | 0.56 | 40 | 0.3249 | 0.9068 | 0.9733 | 0.8488 | 0.9 |
0.3183 | 0.69 | 50 | 0.2801 | 0.9133 | 0.9080 | 0.9186 | 0.9 |
0.1929 | 0.83 | 60 | 0.2832 | 0.9123 | 0.9176 | 0.9070 | 0.9 |
0.2861 | 0.97 | 70 | 0.2883 | 0.9195 | 0.9091 | 0.9302 | 0.9067 |
0.209 | 1.11 | 80 | 0.3000 | 0.9222 | 0.9506 | 0.8953 | 0.9133 |
0.2192 | 1.25 | 90 | 0.2845 | 0.9176 | 0.9286 | 0.9070 | 0.9067 |
0.3116 | 1.39 | 100 | 0.2520 | 0.9249 | 0.9195 | 0.9302 | 0.9133 |
0.2512 | 1.53 | 110 | 0.2650 | 0.9222 | 0.9506 | 0.8953 | 0.9133 |
0.1774 | 1.67 | 120 | 0.2571 | 0.9231 | 0.9398 | 0.9070 | 0.9133 |
0.1126 | 1.81 | 130 | 0.2668 | 0.9364 | 0.9310 | 0.9419 | 0.9267 |
0.2379 | 1.94 | 140 | 0.3075 | 0.9012 | 0.9605 | 0.8488 | 0.8933 |
0.2753 | 2.08 | 150 | 0.2254 | 0.9240 | 0.9294 | 0.9186 | 0.9133 |
0.1727 | 2.22 | 160 | 0.2707 | 0.9310 | 0.9205 | 0.9419 | 0.92 |
0.224 | 2.36 | 170 | 0.3118 | 0.9057 | 0.9863 | 0.8372 | 0.9 |
0.2056 | 2.5 | 180 | 0.2673 | 0.9302 | 0.9302 | 0.9302 | 0.92 |
0.2274 | 2.64 | 190 | 0.2515 | 0.9302 | 0.9302 | 0.9302 | 0.92 |
0.1193 | 2.78 | 200 | 0.2250 | 0.9357 | 0.9412 | 0.9302 | 0.9267 |
0.2806 | 2.92 | 210 | 0.2268 | 0.9286 | 0.9512 | 0.9070 | 0.92 |
0.1272 | 3.06 | 220 | 0.2031 | 0.9349 | 0.9518 | 0.9186 | 0.9267 |
0.1879 | 3.19 | 230 | 0.1730 | 0.9480 | 0.9425 | 0.9535 | 0.94 |
0.1341 | 3.33 | 240 | 0.1867 | 0.9419 | 0.9419 | 0.9419 | 0.9333 |
0.1376 | 3.47 | 250 | 0.2628 | 0.9341 | 0.9630 | 0.9070 | 0.9267 |
0.1599 | 3.61 | 260 | 0.2484 | 0.9405 | 0.9634 | 0.9186 | 0.9333 |
0.1899 | 3.75 | 270 | 0.1847 | 0.9480 | 0.9425 | 0.9535 | 0.94 |
0.0828 | 3.89 | 280 | 0.1869 | 0.9412 | 0.9524 | 0.9302 | 0.9333 |
0.1025 | 4.03 | 290 | 0.1876 | 0.9349 | 0.9518 | 0.9186 | 0.9267 |
0.118 | 4.17 | 300 | 0.1811 | 0.9419 | 0.9419 | 0.9419 | 0.9333 |
0.1475 | 4.31 | 310 | 0.1901 | 0.9294 | 0.9405 | 0.9186 | 0.92 |
0.1354 | 4.44 | 320 | 0.1805 | 0.9357 | 0.9412 | 0.9302 | 0.9267 |
0.1444 | 4.58 | 330 | 0.1706 | 0.9540 | 0.9432 | 0.9651 | 0.9467 |
0.1068 | 4.72 | 340 | 0.1693 | 0.9480 | 0.9425 | 0.9535 | 0.94 |
0.0875 | 4.86 | 350 | 0.1715 | 0.9412 | 0.9524 | 0.9302 | 0.9333 |
0.0922 | 5.0 | 360 | 0.1726 | 0.9412 | 0.9524 | 0.9302 | 0.9333 |
Framework versions
- PEFT 0.9.0
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2