ClaudiaIoana550
commited on
Commit
•
bf6608a
1
Parent(s):
973ff97
Rename modelling_RW.py to modeling_falcon.py
Browse files- modelling_RW.py → modeling_falcon.py +407 -245
modelling_RW.py → modeling_falcon.py
RENAMED
@@ -1,9 +1,20 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import math
|
6 |
-
import warnings
|
7 |
from typing import Optional, Tuple, Union
|
8 |
|
9 |
import torch
|
@@ -20,59 +31,60 @@ from transformers.modeling_outputs import (
|
|
20 |
TokenClassifierOutput,
|
21 |
)
|
22 |
from transformers.modeling_utils import PreTrainedModel
|
23 |
-
from transformers.utils import logging
|
24 |
-
from .
|
|
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
29 |
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
30 |
-
class
|
31 |
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
32 |
-
|
33 |
if self.bias is None:
|
34 |
-
return
|
35 |
-
|
36 |
-
return ret + self.bias
|
37 |
-
|
38 |
|
39 |
-
from einops import rearrange
|
40 |
|
41 |
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
42 |
def rotate_half(x):
|
43 |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
44 |
-
return torch.cat((-x2, x1), dim
|
45 |
|
46 |
|
47 |
-
class
|
48 |
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
49 |
-
This implementation is
|
50 |
-
|
51 |
"""
|
52 |
|
53 |
-
def __init__(
|
54 |
-
self,
|
55 |
-
head_dim: int,
|
56 |
-
base=10000,
|
57 |
-
):
|
58 |
super().__init__()
|
59 |
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
60 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
61 |
self.head_dim = head_dim
|
62 |
-
self.seq_len_cached =
|
63 |
-
self.batch_size_cached = None
|
64 |
self.cos_cached: torch.Tensor | None = None
|
65 |
self.sin_cached: torch.Tensor | None = None
|
66 |
|
67 |
-
def cos_sin(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
) -> torch.Tensor:
|
73 |
-
if seq_len != self.seq_len_cached:
|
74 |
-
self.seq_len_cached = seq_len
|
75 |
-
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
76 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
77 |
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
78 |
|
@@ -85,36 +97,46 @@ class RotaryEmbedding(torch.nn.Module):
|
|
85 |
self.cos_cached = self.cos_cached.type(dtype)
|
86 |
self.sin_cached = self.sin_cached.type(dtype)
|
87 |
|
88 |
-
return
|
|
|
|
|
|
|
89 |
|
90 |
-
def forward(self,
|
91 |
-
batch, seq_len, head_dim =
|
92 |
-
cos, sin = self.cos_sin(seq_len,
|
93 |
-
return (
|
94 |
|
95 |
|
96 |
def _make_causal_mask(
|
97 |
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
98 |
) -> torch.BoolTensor:
|
|
|
|
|
|
|
|
|
|
|
99 |
batch_size, target_length = input_ids_shape
|
100 |
-
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
101 |
-
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
102 |
-
seq_ids = torch.arange(target_length, device=device)
|
103 |
-
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
104 |
-
|
105 |
-
if past_key_values_length > 0:
|
106 |
-
mask[:, :past_key_values_length] = False
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
109 |
return expanded_mask
|
110 |
|
111 |
|
112 |
-
def _expand_mask(mask: torch.Tensor,
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
117 |
-
return expanded_mask.expand(batch_size, 1,
|
118 |
|
119 |
|
120 |
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
@@ -145,18 +167,32 @@ def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torc
|
|
145 |
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
146 |
|
147 |
|
|
|
148 |
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
out = F.dropout(x, p=prob, training=training)
|
150 |
out = residual + out
|
151 |
return out
|
152 |
|
153 |
|
154 |
-
class
|
155 |
-
def __init__(self, config:
|
156 |
super().__init__()
|
157 |
|
158 |
self.hidden_size = config.hidden_size
|
159 |
-
self.num_heads = config.
|
160 |
self.head_dim = self.hidden_size // self.num_heads
|
161 |
self.split_size = self.hidden_size
|
162 |
self.hidden_dropout = config.hidden_dropout
|
@@ -167,26 +203,27 @@ class Attention(nn.Module):
|
|
167 |
f" {self.num_heads})."
|
168 |
)
|
169 |
|
170 |
-
self.maybe_rotary =
|
171 |
|
172 |
# Layer-wise attention scaling
|
173 |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
174 |
self.beta = self.inv_norm_factor
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
181 |
self.multi_query = config.multi_query
|
182 |
-
self.dense =
|
183 |
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
184 |
-
self.
|
185 |
|
186 |
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
187 |
"""
|
188 |
-
Split the last dimension into (num_heads, head_dim)
|
189 |
-
storage as `fused_qkv`
|
190 |
|
191 |
Args:
|
192 |
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
@@ -195,7 +232,18 @@ class Attention(nn.Module):
|
|
195 |
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
196 |
value: [batch_size, seq_length, num_heads, head_dim]
|
197 |
"""
|
198 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
200 |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
201 |
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
@@ -204,12 +252,13 @@ class Attention(nn.Module):
|
|
204 |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
205 |
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
206 |
|
|
|
207 |
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
208 |
"""
|
209 |
Merge heads together over the last dimenstion
|
210 |
|
211 |
Args:
|
212 |
-
x
|
213 |
|
214 |
Returns:
|
215 |
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
@@ -232,7 +281,7 @@ class Attention(nn.Module):
|
|
232 |
def forward(
|
233 |
self,
|
234 |
hidden_states: torch.Tensor,
|
235 |
-
alibi: torch.Tensor,
|
236 |
attention_mask: torch.Tensor,
|
237 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
238 |
head_mask: Optional[torch.Tensor] = None,
|
@@ -240,105 +289,120 @@ class Attention(nn.Module):
|
|
240 |
output_attentions: bool = False,
|
241 |
):
|
242 |
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
243 |
-
|
244 |
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
245 |
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
246 |
|
247 |
-
batch_size,
|
248 |
|
249 |
-
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads,
|
250 |
key_layer = key_layer.transpose(1, 2).reshape(
|
251 |
-
batch_size *
|
252 |
-
|
253 |
self.head_dim,
|
254 |
)
|
255 |
-
value_layer = value_layer.transpose(1, 2).reshape(batch_size *
|
256 |
|
257 |
-
|
|
|
258 |
|
259 |
if layer_past is not None:
|
260 |
past_key, past_value = layer_past
|
261 |
# concatenate along seq_length dimension:
|
262 |
-
# - key: [batch_size * self.num_heads,
|
263 |
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
264 |
key_layer = torch.cat((past_key, key_layer), dim=1)
|
265 |
value_layer = torch.cat((past_value, value_layer), dim=1)
|
266 |
|
267 |
_, kv_length, _ = key_layer.shape
|
268 |
-
|
269 |
-
if use_cache is True:
|
270 |
present = (key_layer, value_layer)
|
271 |
else:
|
272 |
present = None
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
if alibi is None:
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
attn_output =
|
286 |
|
287 |
output_tensor = self.dense(attn_output)
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
292 |
else:
|
293 |
-
|
294 |
-
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
295 |
|
296 |
# change view to [batch_size, num_heads, q_length, kv_length]
|
297 |
-
attention_scores = matmul_result.view(batch_size, self.num_heads,
|
298 |
|
299 |
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
300 |
input_dtype = attention_scores.dtype
|
301 |
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
302 |
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
303 |
attention_scores = attention_scores.to(torch.float32)
|
304 |
-
#
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
310 |
# [batch_size, num_heads, q_length, kv_length]
|
311 |
attention_probs = self.attention_dropout(attention_probs)
|
312 |
|
313 |
if head_mask is not None:
|
314 |
attention_probs = attention_probs * head_mask
|
315 |
|
316 |
-
# change view [batch_size
|
317 |
-
attention_probs_reshaped = attention_probs.view(batch_size
|
318 |
|
319 |
# matmul: [batch_size * num_heads, q_length, head_dim]
|
320 |
-
context_layer = attention_probs_reshaped @
|
321 |
|
322 |
# change view [batch_size, num_heads, q_length, head_dim]
|
323 |
context_layer = self._merge_heads(context_layer)
|
324 |
|
325 |
output_tensor = self.dense(context_layer)
|
326 |
|
327 |
-
outputs = (output_tensor, present)
|
328 |
if output_attentions:
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
|
333 |
|
334 |
-
class
|
335 |
-
def __init__(self, config:
|
336 |
super().__init__()
|
337 |
hidden_size = config.hidden_size
|
338 |
|
339 |
-
self.dense_h_to_4h =
|
340 |
self.act = nn.GELU()
|
341 |
-
self.dense_4h_to_h =
|
342 |
self.hidden_dropout = config.hidden_dropout
|
343 |
|
344 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
@@ -347,43 +411,47 @@ class MLP(nn.Module):
|
|
347 |
return x
|
348 |
|
349 |
|
350 |
-
class
|
351 |
-
def __init__(self, config:
|
352 |
super().__init__()
|
353 |
hidden_size = config.hidden_size
|
354 |
-
|
355 |
-
self.
|
356 |
-
self.
|
357 |
-
self.self_attention = Attention(config)
|
358 |
-
|
359 |
-
if not config.parallel_attn:
|
360 |
-
# unused if parallel attn
|
361 |
-
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
362 |
-
|
363 |
-
self.mlp = MLP(config)
|
364 |
-
|
365 |
-
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
366 |
self.hidden_dropout = config.hidden_dropout
|
367 |
-
|
368 |
self.config = config
|
369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
def forward(
|
371 |
self,
|
372 |
hidden_states: torch.Tensor,
|
373 |
-
alibi: torch.Tensor,
|
374 |
attention_mask: torch.Tensor,
|
375 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
376 |
head_mask: Optional[torch.Tensor] = None,
|
377 |
use_cache: bool = False,
|
378 |
output_attentions: bool = False,
|
379 |
):
|
380 |
-
|
381 |
-
layernorm_output = self.input_layernorm(hidden_states)
|
382 |
residual = hidden_states
|
383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
# Self attention.
|
385 |
attn_outputs = self.self_attention(
|
386 |
-
|
387 |
layer_past=layer_past,
|
388 |
attention_mask=attention_mask,
|
389 |
alibi=alibi,
|
@@ -394,16 +462,21 @@ class DecoderLayer(nn.Module):
|
|
394 |
|
395 |
attention_output = attn_outputs[0]
|
396 |
|
397 |
-
if not self.config.
|
398 |
-
|
399 |
-
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
outputs = attn_outputs[1:]
|
402 |
|
403 |
# MLP.
|
404 |
-
mlp_output = self.mlp(
|
405 |
|
406 |
-
if self.config.parallel_attn:
|
407 |
mlp_output += attention_output
|
408 |
|
409 |
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
@@ -416,24 +489,93 @@ class DecoderLayer(nn.Module):
|
|
416 |
return outputs # hidden_states, present, attentions
|
417 |
|
418 |
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
"""
|
422 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
423 |
models.
|
424 |
"""
|
425 |
|
426 |
-
config_class =
|
427 |
base_model_prefix = "transformer"
|
428 |
supports_gradient_checkpointing = True
|
429 |
-
_no_split_modules = ["
|
430 |
|
431 |
def __init__(self, *inputs, **kwargs):
|
432 |
super().__init__(*inputs, **kwargs)
|
433 |
|
434 |
def _init_weights(self, module: nn.Module):
|
435 |
"""Initialize the weights."""
|
436 |
-
if isinstance(module, nn.Linear) or isinstance(module,
|
437 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
438 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
439 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
@@ -447,26 +589,28 @@ class RWPreTrainedModel(PreTrainedModel):
|
|
447 |
module.bias.data.zero_()
|
448 |
module.weight.data.fill_(1.0)
|
449 |
|
|
|
450 |
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
451 |
-
if isinstance(module,
|
452 |
module.gradient_checkpointing = value
|
453 |
|
454 |
@staticmethod
|
455 |
-
def
|
456 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
457 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
458 |
"""
|
459 |
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
460 |
num_heads, ...]))
|
461 |
"""
|
462 |
-
batch_size_times_num_heads,
|
|
|
|
|
|
|
463 |
num_heads = batch_size_times_num_heads // batch_size
|
464 |
-
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
465 |
-
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
466 |
return tuple(
|
467 |
(
|
468 |
-
layer_past[0].view(batch_size, num_heads,
|
469 |
-
layer_past[1].view(batch_size, num_heads,
|
470 |
)
|
471 |
for layer_past in past_key_value
|
472 |
)
|
@@ -475,32 +619,35 @@ class RWPreTrainedModel(PreTrainedModel):
|
|
475 |
def _convert_to_rw_cache(
|
476 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
477 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
478 |
-
batch_size, num_heads,
|
479 |
batch_size_times_num_heads = batch_size * num_heads
|
480 |
-
#
|
481 |
-
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
482 |
return tuple(
|
483 |
(
|
484 |
-
layer_past[0].view(batch_size_times_num_heads,
|
485 |
-
layer_past[1].view(batch_size_times_num_heads,
|
486 |
)
|
487 |
for layer_past in past_key_value
|
488 |
)
|
489 |
|
490 |
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
|
|
493 |
super().__init__(config)
|
494 |
|
495 |
self.embed_dim = config.hidden_size
|
496 |
-
self.num_heads = config.
|
497 |
-
self.
|
498 |
|
499 |
# Embedding + LN Embedding
|
500 |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
501 |
|
502 |
# Transformer blocks
|
503 |
-
self.h = nn.ModuleList([
|
504 |
|
505 |
# Final Layer Norm
|
506 |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
@@ -513,22 +660,31 @@ class RWModel(RWPreTrainedModel):
|
|
513 |
def get_input_embeddings(self):
|
514 |
return self.word_embeddings
|
515 |
|
|
|
516 |
def _prepare_attn_mask(
|
517 |
-
|
518 |
) -> torch.BoolTensor:
|
519 |
-
#
|
520 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
combined_attention_mask = None
|
522 |
device = attention_mask.device
|
523 |
-
_,
|
524 |
|
525 |
-
if
|
526 |
combined_attention_mask = _make_causal_mask(
|
527 |
input_shape, device=device, past_key_values_length=past_key_values_length
|
528 |
)
|
529 |
|
530 |
-
# [batch_size, seq_length] -> [batch_size, 1,
|
531 |
-
expanded_attn_mask = _expand_mask(attention_mask,
|
532 |
combined_attention_mask = (
|
533 |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
534 |
)
|
@@ -538,6 +694,12 @@ class RWModel(RWPreTrainedModel):
|
|
538 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
539 |
self.word_embeddings = new_embeddings
|
540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
def forward(
|
542 |
self,
|
543 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -549,18 +711,7 @@ class RWModel(RWPreTrainedModel):
|
|
549 |
output_attentions: Optional[bool] = None,
|
550 |
output_hidden_states: Optional[bool] = None,
|
551 |
return_dict: Optional[bool] = None,
|
552 |
-
**deprecated_arguments,
|
553 |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
554 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
555 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
556 |
-
warnings.warn(
|
557 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
558 |
-
" passing `position_ids`.",
|
559 |
-
FutureWarning,
|
560 |
-
)
|
561 |
-
if len(deprecated_arguments) > 0:
|
562 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
563 |
-
|
564 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
565 |
output_hidden_states = (
|
566 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -579,12 +730,14 @@ class RWModel(RWPreTrainedModel):
|
|
579 |
|
580 |
if past_key_values is None:
|
581 |
past_key_values = tuple([None] * len(self.h))
|
|
|
|
|
582 |
|
583 |
# Prepare head mask if needed
|
584 |
# 1.0 in head_mask indicate we keep the head
|
585 |
# attention_probs has shape batch_size x num_heads x N x N
|
586 |
# head_mask has shape n_layer x batch x num_heads x N x N
|
587 |
-
head_mask = self.get_head_mask(head_mask, self.config.
|
588 |
|
589 |
if inputs_embeds is None:
|
590 |
inputs_embeds = self.word_embeddings(input_ids)
|
@@ -596,17 +749,15 @@ class RWModel(RWPreTrainedModel):
|
|
596 |
all_hidden_states = () if output_hidden_states else None
|
597 |
|
598 |
# Compute alibi tensor: check build_alibi_tensor documentation
|
599 |
-
seq_length_with_past = seq_length
|
600 |
past_key_values_length = 0
|
601 |
if past_key_values[0] is not None:
|
602 |
-
past_key_values_length = past_key_values[0][0].shape[
|
603 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
604 |
if attention_mask is None:
|
605 |
-
attention_mask = torch.ones((batch_size,
|
606 |
else:
|
607 |
attention_mask = attention_mask.to(hidden_states.device)
|
608 |
|
609 |
-
if self.
|
610 |
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
611 |
else:
|
612 |
alibi = None
|
@@ -618,12 +769,10 @@ class RWModel(RWPreTrainedModel):
|
|
618 |
)
|
619 |
|
620 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
621 |
-
|
622 |
if output_hidden_states:
|
623 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
624 |
|
625 |
if self.gradient_checkpointing and self.training:
|
626 |
-
|
627 |
if use_cache:
|
628 |
logger.warning(
|
629 |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
@@ -668,6 +817,9 @@ class RWModel(RWPreTrainedModel):
|
|
668 |
if output_hidden_states:
|
669 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
670 |
|
|
|
|
|
|
|
671 |
if not return_dict:
|
672 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
673 |
|
@@ -679,12 +831,16 @@ class RWModel(RWPreTrainedModel):
|
|
679 |
)
|
680 |
|
681 |
|
682 |
-
|
683 |
-
|
|
|
|
|
|
|
|
|
684 |
|
685 |
-
def __init__(self, config:
|
686 |
super().__init__(config)
|
687 |
-
self.transformer =
|
688 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
689 |
|
690 |
# Initialize weights and apply final processing
|
@@ -699,25 +855,26 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
699 |
def prepare_inputs_for_generation(
|
700 |
self,
|
701 |
input_ids: torch.LongTensor,
|
702 |
-
|
703 |
attention_mask: Optional[torch.Tensor] = None,
|
704 |
**kwargs,
|
705 |
) -> dict:
|
706 |
-
|
707 |
-
|
708 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
709 |
-
|
710 |
-
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
|
711 |
-
if past[0][0].shape[0] == input_ids.shape[0]:
|
712 |
-
past = self._convert_to_rw_cache(past)
|
713 |
|
714 |
return {
|
715 |
"input_ids": input_ids,
|
716 |
-
"past_key_values":
|
717 |
"use_cache": kwargs.get("use_cache"),
|
718 |
"attention_mask": attention_mask,
|
719 |
}
|
720 |
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
def forward(
|
722 |
self,
|
723 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -730,7 +887,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
730 |
output_attentions: Optional[bool] = None,
|
731 |
output_hidden_states: Optional[bool] = None,
|
732 |
return_dict: Optional[bool] = None,
|
733 |
-
**deprecated_arguments,
|
734 |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
735 |
r"""
|
736 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
@@ -738,15 +894,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
738 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
739 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
740 |
"""
|
741 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
742 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
743 |
-
warnings.warn(
|
744 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
745 |
-
" passing `position_ids`.",
|
746 |
-
FutureWarning,
|
747 |
-
)
|
748 |
-
if len(deprecated_arguments) > 0:
|
749 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
750 |
|
751 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
752 |
|
@@ -799,7 +946,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
799 |
|
800 |
Output shares the same memory storage as `past`.
|
801 |
"""
|
802 |
-
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
803 |
|
804 |
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
805 |
device_to_beam_idx = {
|
@@ -810,23 +956,42 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
810 |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
811 |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
812 |
)
|
813 |
-
for layer_past in
|
814 |
)
|
815 |
-
return
|
816 |
-
|
817 |
|
818 |
-
class RWForSequenceClassification(RWPreTrainedModel):
|
819 |
-
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
820 |
|
821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
super().__init__(config)
|
823 |
self.num_labels = config.num_labels
|
824 |
-
self.transformer =
|
825 |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
826 |
|
827 |
# Initialize weights and apply final processing
|
828 |
self.post_init()
|
829 |
|
|
|
|
|
|
|
|
|
|
|
|
|
830 |
def forward(
|
831 |
self,
|
832 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -839,7 +1004,6 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
839 |
output_attentions: Optional[bool] = None,
|
840 |
output_hidden_states: Optional[bool] = None,
|
841 |
return_dict: Optional[bool] = None,
|
842 |
-
**deprecated_arguments,
|
843 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
844 |
r"""
|
845 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
@@ -847,15 +1011,6 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
847 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
848 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
849 |
"""
|
850 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
851 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
852 |
-
warnings.warn(
|
853 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
854 |
-
" passing `position_ids`.",
|
855 |
-
FutureWarning,
|
856 |
-
)
|
857 |
-
if len(deprecated_arguments) > 0:
|
858 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
859 |
|
860 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
861 |
|
@@ -930,17 +1085,22 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
930 |
)
|
931 |
|
932 |
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
|
|
|
|
|
|
|
|
|
|
937 |
super().__init__(config)
|
938 |
self.num_labels = config.num_labels
|
939 |
|
940 |
-
self.transformer =
|
941 |
-
if
|
942 |
classifier_dropout = config.classifier_dropout
|
943 |
-
elif
|
944 |
classifier_dropout = config.hidden_dropout
|
945 |
else:
|
946 |
classifier_dropout = 0.1
|
@@ -950,6 +1110,12 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
950 |
# Initialize weights and apply final processing
|
951 |
self.post_init()
|
952 |
|
|
|
|
|
|
|
|
|
|
|
|
|
953 |
def forward(
|
954 |
self,
|
955 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -962,7 +1128,6 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
962 |
output_attentions: Optional[bool] = None,
|
963 |
output_hidden_states: Optional[bool] = None,
|
964 |
return_dict: Optional[bool] = None,
|
965 |
-
**deprecated_arguments,
|
966 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
967 |
r"""
|
968 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
@@ -970,15 +1135,6 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
970 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
971 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
972 |
"""
|
973 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
974 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
975 |
-
warnings.warn(
|
976 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
977 |
-
" passing `position_ids`.",
|
978 |
-
FutureWarning,
|
979 |
-
)
|
980 |
-
if len(deprecated_arguments) > 0:
|
981 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
982 |
|
983 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
984 |
|
@@ -1002,7 +1158,9 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
1002 |
if labels is not None:
|
1003 |
batch_size, seq_length = labels.shape
|
1004 |
loss_fct = CrossEntropyLoss()
|
1005 |
-
loss = loss_fct(
|
|
|
|
|
1006 |
|
1007 |
if not return_dict:
|
1008 |
output = (logits,) + transformer_outputs[2:]
|
@@ -1016,22 +1174,27 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
1016 |
)
|
1017 |
|
1018 |
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
|
|
|
|
|
|
|
|
|
|
1022 |
def __init__(self, config):
|
1023 |
super().__init__(config)
|
1024 |
-
self.transformer =
|
1025 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1026 |
|
1027 |
# Initialize weights and apply final processing
|
1028 |
self.post_init()
|
1029 |
|
|
|
1030 |
def forward(
|
1031 |
self,
|
1032 |
input_ids: Optional[torch.LongTensor] = None,
|
1033 |
attention_mask: Optional[torch.FloatTensor] = None,
|
1034 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1035 |
head_mask: Optional[torch.FloatTensor] = None,
|
1036 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1037 |
start_positions: Optional[torch.LongTensor] = None,
|
@@ -1055,7 +1218,6 @@ class RWForQuestionAnswering(RWPreTrainedModel):
|
|
1055 |
outputs = self.transformer(
|
1056 |
input_ids,
|
1057 |
attention_mask=attention_mask,
|
1058 |
-
position_ids=position_ids,
|
1059 |
head_mask=head_mask,
|
1060 |
inputs_embeds=inputs_embeds,
|
1061 |
output_attentions=output_attentions,
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Falcon model."""
|
16 |
|
17 |
import math
|
|
|
18 |
from typing import Optional, Tuple, Union
|
19 |
|
20 |
import torch
|
|
|
31 |
TokenClassifierOutput,
|
32 |
)
|
33 |
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
35 |
+
from .configuration_falcon import FalconConfig
|
36 |
+
|
37 |
|
38 |
logger = logging.get_logger(__name__)
|
39 |
|
40 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
41 |
+
"tiiuae/falcon-40b",
|
42 |
+
"tiiuae/falcon-40b-instruct",
|
43 |
+
"tiiuae/falcon-7b",
|
44 |
+
"tiiuae/falcon-7b-instruct",
|
45 |
+
"tiiuae/falcon-rw-7b",
|
46 |
+
"tiiuae/falcon-rw-1b",
|
47 |
+
]
|
48 |
+
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
49 |
+
_CONFIG_FOR_DOC = "FalconConfig"
|
50 |
+
|
51 |
+
|
52 |
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
53 |
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
54 |
+
class FalconLinear(nn.Linear):
|
55 |
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
56 |
+
hidden_states = input @ self.weight.T
|
57 |
if self.bias is None:
|
58 |
+
return hidden_states
|
59 |
+
return hidden_states + self.bias
|
|
|
|
|
60 |
|
|
|
61 |
|
62 |
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
63 |
def rotate_half(x):
|
64 |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
65 |
+
return torch.cat((-x2, x1), dim=-1)
|
66 |
|
67 |
|
68 |
+
class FalconRotaryEmbedding(nn.Module):
|
69 |
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
70 |
+
This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
|
71 |
+
n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
|
72 |
"""
|
73 |
|
74 |
+
def __init__(self, head_dim: int, base=10000):
|
|
|
|
|
|
|
|
|
75 |
super().__init__()
|
76 |
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
77 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
78 |
self.head_dim = head_dim
|
79 |
+
self.seq_len_cached = -1
|
|
|
80 |
self.cos_cached: torch.Tensor | None = None
|
81 |
self.sin_cached: torch.Tensor | None = None
|
82 |
|
83 |
+
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
|
84 |
+
total_length = seq_len + past_key_values_length
|
85 |
+
if total_length > self.seq_len_cached:
|
86 |
+
self.seq_len_cached = total_length
|
87 |
+
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
|
|
|
|
|
88 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
89 |
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
90 |
|
|
|
97 |
self.cos_cached = self.cos_cached.type(dtype)
|
98 |
self.sin_cached = self.sin_cached.type(dtype)
|
99 |
|
100 |
+
return (
|
101 |
+
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
102 |
+
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
103 |
+
)
|
104 |
|
105 |
+
def forward(self, query, key, past_key_values_length=0):
|
106 |
+
batch, seq_len, head_dim = query.shape
|
107 |
+
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
|
108 |
+
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)
|
109 |
|
110 |
|
111 |
def _make_causal_mask(
|
112 |
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
113 |
) -> torch.BoolTensor:
|
114 |
+
"""
|
115 |
+
Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it
|
116 |
+
just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1,
|
117 |
+
target_length, target_length+past_key_values_length]`.
|
118 |
+
"""
|
119 |
batch_size, target_length = input_ids_shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1)
|
122 |
+
# If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op.
|
123 |
+
# This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this
|
124 |
+
# way avoids a data-dependent conditional, which will help me when I have to port this to XLA later.
|
125 |
+
past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device)
|
126 |
+
mask = torch.cat([past_mask, mask], dim=-1)
|
127 |
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
128 |
return expanded_mask
|
129 |
|
130 |
|
131 |
+
def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
|
132 |
+
"""
|
133 |
+
Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
|
134 |
+
"""
|
135 |
+
batch_size, total_length = mask.shape
|
136 |
+
seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length
|
137 |
|
138 |
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
139 |
+
return expanded_mask.expand(batch_size, 1, seq_length, total_length)
|
140 |
|
141 |
|
142 |
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
|
|
167 |
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
168 |
|
169 |
|
170 |
+
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
171 |
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
172 |
+
"""
|
173 |
+
Dropout add function
|
174 |
+
|
175 |
+
Args:
|
176 |
+
x (`torch.tensor`, *required*):
|
177 |
+
input tensor
|
178 |
+
residual (`torch.tensor`, *required*):
|
179 |
+
residual tensor
|
180 |
+
prob (`float`, *required*):
|
181 |
+
dropout probability
|
182 |
+
training (`bool`, *required*):
|
183 |
+
training mode
|
184 |
+
"""
|
185 |
out = F.dropout(x, p=prob, training=training)
|
186 |
out = residual + out
|
187 |
return out
|
188 |
|
189 |
|
190 |
+
class FalconAttention(nn.Module):
|
191 |
+
def __init__(self, config: FalconConfig):
|
192 |
super().__init__()
|
193 |
|
194 |
self.hidden_size = config.hidden_size
|
195 |
+
self.num_heads = config.num_attention_heads
|
196 |
self.head_dim = self.hidden_size // self.num_heads
|
197 |
self.split_size = self.hidden_size
|
198 |
self.hidden_dropout = config.hidden_dropout
|
|
|
203 |
f" {self.num_heads})."
|
204 |
)
|
205 |
|
206 |
+
self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)
|
207 |
|
208 |
# Layer-wise attention scaling
|
209 |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
210 |
self.beta = self.inv_norm_factor
|
211 |
+
if config.new_decoder_architecture:
|
212 |
+
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
213 |
+
elif config.multi_query:
|
214 |
+
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
215 |
+
else:
|
216 |
+
qkv_out_dim = 3 * self.hidden_size
|
217 |
+
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
218 |
+
self.new_decoder_architecture = config.new_decoder_architecture
|
219 |
self.multi_query = config.multi_query
|
220 |
+
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
221 |
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
222 |
+
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
223 |
|
224 |
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
225 |
"""
|
226 |
+
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
|
|
227 |
|
228 |
Args:
|
229 |
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
|
|
232 |
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
233 |
value: [batch_size, seq_length, num_heads, head_dim]
|
234 |
"""
|
235 |
+
if self.new_decoder_architecture:
|
236 |
+
batch, seq_len, _ = fused_qkv.shape
|
237 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
238 |
+
query = qkv[:, :, :, :-2]
|
239 |
+
key = qkv[:, :, :, [-2]]
|
240 |
+
value = qkv[:, :, :, [-1]]
|
241 |
+
key = torch.broadcast_to(key, query.shape)
|
242 |
+
value = torch.broadcast_to(value, query.shape)
|
243 |
+
|
244 |
+
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
245 |
+
return query, key, value
|
246 |
+
elif not self.multi_query:
|
247 |
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
248 |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
249 |
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
|
|
252 |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
253 |
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
254 |
|
255 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
256 |
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
257 |
"""
|
258 |
Merge heads together over the last dimenstion
|
259 |
|
260 |
Args:
|
261 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
262 |
|
263 |
Returns:
|
264 |
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
|
|
281 |
def forward(
|
282 |
self,
|
283 |
hidden_states: torch.Tensor,
|
284 |
+
alibi: Optional[torch.Tensor],
|
285 |
attention_mask: torch.Tensor,
|
286 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
287 |
head_mask: Optional[torch.Tensor] = None,
|
|
|
289 |
output_attentions: bool = False,
|
290 |
):
|
291 |
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
292 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
293 |
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
294 |
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
295 |
|
296 |
+
batch_size, query_length, _, _ = query_layer.shape
|
297 |
|
298 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
299 |
key_layer = key_layer.transpose(1, 2).reshape(
|
300 |
+
batch_size * num_kv_heads,
|
301 |
+
query_length,
|
302 |
self.head_dim,
|
303 |
)
|
304 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)
|
305 |
|
306 |
+
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
|
307 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
|
308 |
|
309 |
if layer_past is not None:
|
310 |
past_key, past_value = layer_past
|
311 |
# concatenate along seq_length dimension:
|
312 |
+
# - key: [batch_size * self.num_heads, kv_length, head_dim]
|
313 |
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
314 |
key_layer = torch.cat((past_key, key_layer), dim=1)
|
315 |
value_layer = torch.cat((past_value, value_layer), dim=1)
|
316 |
|
317 |
_, kv_length, _ = key_layer.shape
|
318 |
+
if use_cache:
|
|
|
319 |
present = (key_layer, value_layer)
|
320 |
else:
|
321 |
present = None
|
322 |
|
323 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
|
324 |
+
|
325 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
326 |
+
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
327 |
+
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
328 |
+
|
329 |
if alibi is None:
|
330 |
+
if output_attentions:
|
331 |
+
# F.scaled_dot_product_attention doesn't return the attention weights, so we have
|
332 |
+
# to do it by hand if we want them
|
333 |
+
attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
|
334 |
+
attention_scores /= math.sqrt(self.head_dim)
|
335 |
|
336 |
+
attention_scores = F.softmax(
|
337 |
+
attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
|
338 |
+
)
|
339 |
+
attn_output = attention_scores @ value_layer_
|
340 |
+
else:
|
341 |
+
attn_output = F.scaled_dot_product_attention(
|
342 |
+
query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False
|
343 |
+
)
|
344 |
+
attention_scores = None
|
345 |
|
346 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
347 |
+
attn_output = attn_output.permute(0, 2, 1, 3)
|
348 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
349 |
|
350 |
output_tensor = self.dense(attn_output)
|
351 |
|
352 |
+
if output_attentions:
|
353 |
+
return output_tensor, present, attention_scores
|
354 |
+
else:
|
355 |
+
return output_tensor, present
|
356 |
+
|
357 |
else:
|
358 |
+
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
|
|
|
359 |
|
360 |
# change view to [batch_size, num_heads, q_length, kv_length]
|
361 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
362 |
|
363 |
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
364 |
input_dtype = attention_scores.dtype
|
365 |
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
366 |
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
367 |
attention_scores = attention_scores.to(torch.float32)
|
368 |
+
# Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
|
369 |
+
# adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
|
370 |
+
# equivalent and more performant, but there might be a numerical difference. If you're reading this
|
371 |
+
# and you'd like to experiment and maybe file a PR, feel free!
|
372 |
+
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
373 |
+
attention_logits *= self.inv_norm_factor
|
374 |
+
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
|
375 |
# [batch_size, num_heads, q_length, kv_length]
|
376 |
attention_probs = self.attention_dropout(attention_probs)
|
377 |
|
378 |
if head_mask is not None:
|
379 |
attention_probs = attention_probs * head_mask
|
380 |
|
381 |
+
# change view [batch_size, num_heads, q_length, kv_length]
|
382 |
+
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
383 |
|
384 |
# matmul: [batch_size * num_heads, q_length, head_dim]
|
385 |
+
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
|
386 |
|
387 |
# change view [batch_size, num_heads, q_length, head_dim]
|
388 |
context_layer = self._merge_heads(context_layer)
|
389 |
|
390 |
output_tensor = self.dense(context_layer)
|
391 |
|
|
|
392 |
if output_attentions:
|
393 |
+
return output_tensor, present, attention_probs
|
394 |
+
else:
|
395 |
+
return output_tensor, present
|
396 |
|
397 |
|
398 |
+
class FalconMLP(nn.Module):
|
399 |
+
def __init__(self, config: FalconConfig):
|
400 |
super().__init__()
|
401 |
hidden_size = config.hidden_size
|
402 |
|
403 |
+
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
|
404 |
self.act = nn.GELU()
|
405 |
+
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
|
406 |
self.hidden_dropout = config.hidden_dropout
|
407 |
|
408 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
411 |
return x
|
412 |
|
413 |
|
414 |
+
class FalconDecoderLayer(nn.Module):
|
415 |
+
def __init__(self, config: FalconConfig):
|
416 |
super().__init__()
|
417 |
hidden_size = config.hidden_size
|
418 |
+
self.num_heads = config.num_attention_heads
|
419 |
+
self.self_attention = FalconAttention(config)
|
420 |
+
self.mlp = FalconMLP(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
self.hidden_dropout = config.hidden_dropout
|
|
|
422 |
self.config = config
|
423 |
|
424 |
+
if config.new_decoder_architecture:
|
425 |
+
# The layer norm before self-attention
|
426 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
427 |
+
# The layer norm before the MLP
|
428 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
429 |
+
else:
|
430 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
431 |
+
if not config.parallel_attn:
|
432 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
433 |
+
|
434 |
def forward(
|
435 |
self,
|
436 |
hidden_states: torch.Tensor,
|
437 |
+
alibi: Optional[torch.Tensor],
|
438 |
attention_mask: torch.Tensor,
|
439 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
440 |
head_mask: Optional[torch.Tensor] = None,
|
441 |
use_cache: bool = False,
|
442 |
output_attentions: bool = False,
|
443 |
):
|
|
|
|
|
444 |
residual = hidden_states
|
445 |
|
446 |
+
if self.config.new_decoder_architecture:
|
447 |
+
attention_layernorm_out = self.ln_attn(hidden_states)
|
448 |
+
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
449 |
+
else:
|
450 |
+
attention_layernorm_out = self.input_layernorm(hidden_states)
|
451 |
+
|
452 |
# Self attention.
|
453 |
attn_outputs = self.self_attention(
|
454 |
+
attention_layernorm_out,
|
455 |
layer_past=layer_past,
|
456 |
attention_mask=attention_mask,
|
457 |
alibi=alibi,
|
|
|
462 |
|
463 |
attention_output = attn_outputs[0]
|
464 |
|
465 |
+
if not self.config.new_decoder_architecture:
|
466 |
+
if self.config.parallel_attn:
|
467 |
+
mlp_layernorm_out = attention_layernorm_out
|
468 |
+
else:
|
469 |
+
residual = dropout_add(
|
470 |
+
attention_output, residual, self.config.attention_dropout, training=self.training
|
471 |
+
)
|
472 |
+
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
473 |
|
474 |
outputs = attn_outputs[1:]
|
475 |
|
476 |
# MLP.
|
477 |
+
mlp_output = self.mlp(mlp_layernorm_out)
|
478 |
|
479 |
+
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
480 |
mlp_output += attention_output
|
481 |
|
482 |
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
|
|
489 |
return outputs # hidden_states, present, attentions
|
490 |
|
491 |
|
492 |
+
FALCON_START_DOCSTRING = r"""
|
493 |
+
|
494 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
495 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
496 |
+
|
497 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
498 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
499 |
+
and behavior.
|
500 |
+
|
501 |
+
Parameters:
|
502 |
+
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
503 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
504 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
505 |
+
"""
|
506 |
+
|
507 |
+
FALCON_INPUTS_DOCSTRING = r"""
|
508 |
+
Args:
|
509 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
510 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
511 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
512 |
+
|
513 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
514 |
+
`input_ids`.
|
515 |
+
|
516 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
517 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
518 |
+
|
519 |
+
[What are input IDs?](../glossary#input-ids)
|
520 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
521 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
522 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
523 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
524 |
+
|
525 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
526 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
527 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
528 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
529 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
530 |
+
|
531 |
+
- 1 for tokens that are **not masked**,
|
532 |
+
- 0 for tokens that are **masked**.
|
533 |
+
|
534 |
+
[What are attention masks?](../glossary#attention-mask)
|
535 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
536 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
537 |
+
|
538 |
+
- 1 indicates the head is **not masked**,
|
539 |
+
- 0 indicates the head is **masked**.
|
540 |
+
|
541 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
542 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
543 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
544 |
+
model's internal embedding lookup matrix.
|
545 |
+
|
546 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
547 |
+
`past_key_values`).
|
548 |
+
use_cache (`bool`, *optional*):
|
549 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
550 |
+
`past_key_values`).
|
551 |
+
output_attentions (`bool`, *optional*):
|
552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
553 |
+
tensors for more detail.
|
554 |
+
output_hidden_states (`bool`, *optional*):
|
555 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
556 |
+
more detail.
|
557 |
+
return_dict (`bool`, *optional*):
|
558 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
559 |
+
"""
|
560 |
+
|
561 |
+
|
562 |
+
class FalconPreTrainedModel(PreTrainedModel):
|
563 |
"""
|
564 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
565 |
models.
|
566 |
"""
|
567 |
|
568 |
+
config_class = FalconConfig
|
569 |
base_model_prefix = "transformer"
|
570 |
supports_gradient_checkpointing = True
|
571 |
+
_no_split_modules = ["FalconDecoderLayer"]
|
572 |
|
573 |
def __init__(self, *inputs, **kwargs):
|
574 |
super().__init__(*inputs, **kwargs)
|
575 |
|
576 |
def _init_weights(self, module: nn.Module):
|
577 |
"""Initialize the weights."""
|
578 |
+
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
579 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
580 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
581 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
589 |
module.bias.data.zero_()
|
590 |
module.weight.data.fill_(1.0)
|
591 |
|
592 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel
|
593 |
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
594 |
+
if isinstance(module, FalconModel):
|
595 |
module.gradient_checkpointing = value
|
596 |
|
597 |
@staticmethod
|
598 |
+
def _convert_cache_to_standard_format(
|
599 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
600 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
601 |
"""
|
602 |
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
603 |
num_heads, ...]))
|
604 |
"""
|
605 |
+
batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
606 |
+
# [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim]
|
607 |
+
# Note that don't want to use self.num_attention_heads because the number of heads may vary depending
|
608 |
+
# on whether we use multi_query attention.
|
609 |
num_heads = batch_size_times_num_heads // batch_size
|
|
|
|
|
610 |
return tuple(
|
611 |
(
|
612 |
+
layer_past[0].view(batch_size, num_heads, kv_length, head_dim),
|
613 |
+
layer_past[1].view(batch_size, num_heads, kv_length, head_dim),
|
614 |
)
|
615 |
for layer_past in past_key_value
|
616 |
)
|
|
|
619 |
def _convert_to_rw_cache(
|
620 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
621 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
622 |
+
batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
623 |
batch_size_times_num_heads = batch_size * num_heads
|
624 |
+
# [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim]
|
|
|
625 |
return tuple(
|
626 |
(
|
627 |
+
layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim),
|
628 |
+
layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim),
|
629 |
)
|
630 |
for layer_past in past_key_value
|
631 |
)
|
632 |
|
633 |
|
634 |
+
@add_start_docstrings(
|
635 |
+
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
636 |
+
FALCON_START_DOCSTRING,
|
637 |
+
)
|
638 |
+
class FalconModel(FalconPreTrainedModel):
|
639 |
+
def __init__(self, config: FalconConfig):
|
640 |
super().__init__(config)
|
641 |
|
642 |
self.embed_dim = config.hidden_size
|
643 |
+
self.num_heads = config.num_attention_heads
|
644 |
+
self.use_alibi = config.alibi
|
645 |
|
646 |
# Embedding + LN Embedding
|
647 |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
648 |
|
649 |
# Transformer blocks
|
650 |
+
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
651 |
|
652 |
# Final Layer Norm
|
653 |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
660 |
def get_input_embeddings(self):
|
661 |
return self.word_embeddings
|
662 |
|
663 |
+
@staticmethod
|
664 |
def _prepare_attn_mask(
|
665 |
+
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
666 |
) -> torch.BoolTensor:
|
667 |
+
# Create a causal mask
|
668 |
+
# The attention mask we receive as input should cover the whole extended sequence, including any past
|
669 |
+
# cache, so its shape should be [batch_size, seq_length + past_key_values_length]
|
670 |
+
# The output shape will be [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
671 |
+
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
|
672 |
+
raise ValueError(
|
673 |
+
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
|
674 |
+
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
|
675 |
+
f" {past_key_values_length}."
|
676 |
+
)
|
677 |
combined_attention_mask = None
|
678 |
device = attention_mask.device
|
679 |
+
_, seq_length = input_shape
|
680 |
|
681 |
+
if seq_length > 1:
|
682 |
combined_attention_mask = _make_causal_mask(
|
683 |
input_shape, device=device, past_key_values_length=past_key_values_length
|
684 |
)
|
685 |
|
686 |
+
# [batch_size, seq_length + past_key_values_length] -> [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
687 |
+
expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length)
|
688 |
combined_attention_mask = (
|
689 |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
690 |
)
|
|
|
694 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
695 |
self.word_embeddings = new_embeddings
|
696 |
|
697 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
698 |
+
@add_code_sample_docstrings(
|
699 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
700 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
701 |
+
config_class=_CONFIG_FOR_DOC,
|
702 |
+
)
|
703 |
def forward(
|
704 |
self,
|
705 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
711 |
output_attentions: Optional[bool] = None,
|
712 |
output_hidden_states: Optional[bool] = None,
|
713 |
return_dict: Optional[bool] = None,
|
|
|
714 |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
716 |
output_hidden_states = (
|
717 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
730 |
|
731 |
if past_key_values is None:
|
732 |
past_key_values = tuple([None] * len(self.h))
|
733 |
+
else:
|
734 |
+
past_key_values = self._convert_to_rw_cache(past_key_values)
|
735 |
|
736 |
# Prepare head mask if needed
|
737 |
# 1.0 in head_mask indicate we keep the head
|
738 |
# attention_probs has shape batch_size x num_heads x N x N
|
739 |
# head_mask has shape n_layer x batch x num_heads x N x N
|
740 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
741 |
|
742 |
if inputs_embeds is None:
|
743 |
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
749 |
all_hidden_states = () if output_hidden_states else None
|
750 |
|
751 |
# Compute alibi tensor: check build_alibi_tensor documentation
|
|
|
752 |
past_key_values_length = 0
|
753 |
if past_key_values[0] is not None:
|
754 |
+
past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format
|
|
|
755 |
if attention_mask is None:
|
756 |
+
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device)
|
757 |
else:
|
758 |
attention_mask = attention_mask.to(hidden_states.device)
|
759 |
|
760 |
+
if self.use_alibi:
|
761 |
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
762 |
else:
|
763 |
alibi = None
|
|
|
769 |
)
|
770 |
|
771 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
772 |
if output_hidden_states:
|
773 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
774 |
|
775 |
if self.gradient_checkpointing and self.training:
|
|
|
776 |
if use_cache:
|
777 |
logger.warning(
|
778 |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
817 |
if output_hidden_states:
|
818 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
819 |
|
820 |
+
if presents is not None:
|
821 |
+
presents = self._convert_cache_to_standard_format(presents, batch_size)
|
822 |
+
|
823 |
if not return_dict:
|
824 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
825 |
|
|
|
831 |
)
|
832 |
|
833 |
|
834 |
+
@add_start_docstrings(
|
835 |
+
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
836 |
+
FALCON_START_DOCSTRING,
|
837 |
+
)
|
838 |
+
class FalconForCausalLM(FalconPreTrainedModel):
|
839 |
+
_tied_weights_keys = ["lm_head.weight"]
|
840 |
|
841 |
+
def __init__(self, config: FalconConfig):
|
842 |
super().__init__(config)
|
843 |
+
self.transformer = FalconModel(config)
|
844 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
845 |
|
846 |
# Initialize weights and apply final processing
|
|
|
855 |
def prepare_inputs_for_generation(
|
856 |
self,
|
857 |
input_ids: torch.LongTensor,
|
858 |
+
past_key_values: Optional[torch.Tensor] = None,
|
859 |
attention_mask: Optional[torch.Tensor] = None,
|
860 |
**kwargs,
|
861 |
) -> dict:
|
862 |
+
if past_key_values is not None:
|
863 |
+
input_ids = input_ids[:, -1:]
|
|
|
|
|
|
|
|
|
|
|
864 |
|
865 |
return {
|
866 |
"input_ids": input_ids,
|
867 |
+
"past_key_values": past_key_values,
|
868 |
"use_cache": kwargs.get("use_cache"),
|
869 |
"attention_mask": attention_mask,
|
870 |
}
|
871 |
|
872 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
873 |
+
@add_code_sample_docstrings(
|
874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
875 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
876 |
+
config_class=_CONFIG_FOR_DOC,
|
877 |
+
)
|
878 |
def forward(
|
879 |
self,
|
880 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
887 |
output_attentions: Optional[bool] = None,
|
888 |
output_hidden_states: Optional[bool] = None,
|
889 |
return_dict: Optional[bool] = None,
|
|
|
890 |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
891 |
r"""
|
892 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
894 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
895 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
896 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
897 |
|
898 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
899 |
|
|
|
946 |
|
947 |
Output shares the same memory storage as `past`.
|
948 |
"""
|
|
|
949 |
|
950 |
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
951 |
device_to_beam_idx = {
|
|
|
956 |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
957 |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
958 |
)
|
959 |
+
for layer_past in past
|
960 |
)
|
961 |
+
return reordered_past
|
|
|
962 |
|
|
|
|
|
963 |
|
964 |
+
@add_start_docstrings(
|
965 |
+
"""
|
966 |
+
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
967 |
+
|
968 |
+
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
969 |
+
(e.g. GPT-1) do.
|
970 |
+
|
971 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
972 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
973 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
974 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
975 |
+
each row of the batch).
|
976 |
+
""",
|
977 |
+
FALCON_START_DOCSTRING,
|
978 |
+
)
|
979 |
+
class FalconForSequenceClassification(FalconPreTrainedModel):
|
980 |
+
def __init__(self, config: FalconConfig):
|
981 |
super().__init__(config)
|
982 |
self.num_labels = config.num_labels
|
983 |
+
self.transformer = FalconModel(config)
|
984 |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
985 |
|
986 |
# Initialize weights and apply final processing
|
987 |
self.post_init()
|
988 |
|
989 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
990 |
+
@add_code_sample_docstrings(
|
991 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
992 |
+
output_type=SequenceClassifierOutputWithPast,
|
993 |
+
config_class=_CONFIG_FOR_DOC,
|
994 |
+
)
|
995 |
def forward(
|
996 |
self,
|
997 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
1004 |
output_attentions: Optional[bool] = None,
|
1005 |
output_hidden_states: Optional[bool] = None,
|
1006 |
return_dict: Optional[bool] = None,
|
|
|
1007 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1008 |
r"""
|
1009 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
1011 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1012 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1013 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1014 |
|
1015 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1016 |
|
|
|
1085 |
)
|
1086 |
|
1087 |
|
1088 |
+
@add_start_docstrings(
|
1089 |
+
"""
|
1090 |
+
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1091 |
+
Named-Entity-Recognition (NER) tasks.
|
1092 |
+
""",
|
1093 |
+
FALCON_START_DOCSTRING,
|
1094 |
+
)
|
1095 |
+
class FalconForTokenClassification(FalconPreTrainedModel):
|
1096 |
+
def __init__(self, config: FalconConfig):
|
1097 |
super().__init__(config)
|
1098 |
self.num_labels = config.num_labels
|
1099 |
|
1100 |
+
self.transformer = FalconModel(config)
|
1101 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1102 |
classifier_dropout = config.classifier_dropout
|
1103 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1104 |
classifier_dropout = config.hidden_dropout
|
1105 |
else:
|
1106 |
classifier_dropout = 0.1
|
|
|
1110 |
# Initialize weights and apply final processing
|
1111 |
self.post_init()
|
1112 |
|
1113 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1114 |
+
@add_code_sample_docstrings(
|
1115 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1116 |
+
output_type=TokenClassifierOutput,
|
1117 |
+
config_class=_CONFIG_FOR_DOC,
|
1118 |
+
)
|
1119 |
def forward(
|
1120 |
self,
|
1121 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
1128 |
output_attentions: Optional[bool] = None,
|
1129 |
output_hidden_states: Optional[bool] = None,
|
1130 |
return_dict: Optional[bool] = None,
|
|
|
1131 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1132 |
r"""
|
1133 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
1135 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1136 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1137 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1138 |
|
1139 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1140 |
|
|
|
1158 |
if labels is not None:
|
1159 |
batch_size, seq_length = labels.shape
|
1160 |
loss_fct = CrossEntropyLoss()
|
1161 |
+
loss = loss_fct(
|
1162 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1163 |
+
)
|
1164 |
|
1165 |
if not return_dict:
|
1166 |
output = (logits,) + transformer_outputs[2:]
|
|
|
1174 |
)
|
1175 |
|
1176 |
|
1177 |
+
@add_start_docstrings(
|
1178 |
+
"""
|
1179 |
+
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
1180 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1181 |
+
""",
|
1182 |
+
FALCON_START_DOCSTRING,
|
1183 |
+
)
|
1184 |
+
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
1185 |
def __init__(self, config):
|
1186 |
super().__init__(config)
|
1187 |
+
self.transformer = FalconModel(config)
|
1188 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1189 |
|
1190 |
# Initialize weights and apply final processing
|
1191 |
self.post_init()
|
1192 |
|
1193 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1194 |
def forward(
|
1195 |
self,
|
1196 |
input_ids: Optional[torch.LongTensor] = None,
|
1197 |
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
1198 |
head_mask: Optional[torch.FloatTensor] = None,
|
1199 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1200 |
start_positions: Optional[torch.LongTensor] = None,
|
|
|
1218 |
outputs = self.transformer(
|
1219 |
input_ids,
|
1220 |
attention_mask=attention_mask,
|
|
|
1221 |
head_mask=head_mask,
|
1222 |
inputs_embeds=inputs_embeds,
|
1223 |
output_attentions=output_attentions,
|