NER_Pittsburgh_TAA / README.md
CineAI's picture
Update README.md
00a7371 verified
|
raw
history blame
4.58 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: bert-base-uncased
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER_Pittsburgh_TAA
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - type: precision
            value: 0.9429236395877203
            name: Precision
          - type: recall
            value: 0.9517843159190066
            name: Recall
          - type: f1
            value: 0.9473332591025497
            name: F1
          - type: accuracy
            value: 0.9867030994328562
            name: Accuracy
language:
  - en
  - uk

NER_Pittsburgh_TAA

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0860
  • Precision: 0.9429
  • Recall: 0.9518
  • F1: 0.9473
  • Accuracy: 0.9867

Model description

Ukr

Модель була створена як практичне завдання з машиного навчання, це за fine-tuning BERT модель для задачі Named Entity Recognition. Датасет який був використан це conll2003, стандат для навчання моделей під задачу Named Entity Recognition, або ще визначення складових мови в реченні. Дізнатися як працює модель маєте змогу або через інтерфейс, який надає huggingface, або ж через код

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")

model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")

Якщо цікавить чому модель має таку назву, перше це для чого вона для NER, друга складова це назва крутої пісні Pittsburgh третя і остання складова це гурт який пісню створив це The Amity Affliction

En

The model was created as a practical machine learning task, it is a fine-tuning BERT model for the Named Entity Recognition task. The dataset used is conll2003, a standard for training models for the Named Entity Recognition task, or for identifying the components of speech in a sentence. You can find out how the model works either through the interface provided by huggingface or through the code

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")

model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")

If you are wondering why the model has such a name, the first is why it is for NER, the second component is the name of a cool song Pittsburgh, the third and last component is the band that created the song - The Amity Affliction

Intended uses & limitations

Everyone can use this model, it is completely free and distributed under the Apache 2.0 licence.

Training and evaluation data

Training and assessment data are the same - conll2003

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 439 0.0863 0.9437 0.9444 0.9440 0.9861
0.0024 2.0 878 0.0995 0.9394 0.9442 0.9418 0.9852
0.0021 3.0 1317 0.0904 0.9355 0.9463 0.9409 0.9856
0.0012 4.0 1756 0.0835 0.9427 0.9514 0.9471 0.9867
0.0009 5.0 2195 0.0860 0.9429 0.9518 0.9473 0.9867

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1