|
import os |
|
import glob |
|
import requests |
|
import json |
|
from pprint import pprint |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
|
|
x_path = "./init.png" |
|
y_folder = "./New folder" |
|
|
|
output_folder = "output" |
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
def get_image_paths(folder): |
|
image_extensions = ("*.jpg", "*.jpeg", "*.png", "*.bmp") |
|
files = [] |
|
for ext in image_extensions: |
|
files.extend(glob.glob(os.path.join(folder, ext))) |
|
return sorted(files) |
|
|
|
y_paths = get_image_paths(y_folder) |
|
|
|
def send_request(init_image_path, temp_path,controlnet_input_image_path): |
|
url = "http://localhost:7860/sdapi/v1/img2img" |
|
|
|
with open(init_image_path, "rb") as f: |
|
init_image = base64.b64encode(f.read()).decode("utf-8") |
|
|
|
with open(controlnet_input_image_path, "rb") as b: |
|
controlnet_input_image = base64.b64encode(b.read()).decode("utf-8") |
|
|
|
data = { |
|
"init_images": [init_image], |
|
"inpainting_fill": 0, |
|
"inpaint_full_res": True, |
|
"inpaint_full_res_padding": 1, |
|
"inpainting_mask_invert": 1, |
|
"resize_mode": 0, |
|
"denoising_strength": 0.5, |
|
"prompt": "anime man at computer", |
|
"negative_prompt": "(ugly:1.3), (fused fingers), (too many fingers), (bad anatomy:1.5), (watermark:1.5), (words), letters, untracked eyes, asymmetric eyes, floating head, (logo:1.5), (bad hands:1.3), (mangled hands:1.2), (missing hands), (missing arms), backward hands, floating jewelry, unattached jewelry, floating head, doubled head, unattached head, doubled head, head in body, (misshapen body:1.1), (badly fitted headwear:1.2), floating arms, (too many arms:1.5), limbs fused with body, (facial blemish:1.5), badly fitted clothes, imperfect eyes, untracked eyes, crossed eyes, hair growing from clothes, partial faces, hair not attached to head", |
|
"alwayson_scripts": { |
|
"ControlNet":{ |
|
"args": [ |
|
{ |
|
"input_image": controlnet_input_image, |
|
"module": "hed", |
|
"model": "control_hed-fp16 [13fee50b]", |
|
"weight": 1, |
|
"guidance": 0.6, |
|
}, |
|
{ |
|
"input_image": init_image, |
|
"model": "temporalnetv3 [b146ac48]", |
|
"module": "none", |
|
"weight": 1, |
|
"guidance": 0.8, |
|
} |
|
|
|
] |
|
} |
|
}, |
|
"seed": 770169050, |
|
"subseed": -1, |
|
"subseed_strength": -1, |
|
"sampler_index": "Euler a", |
|
"batch_size": 1, |
|
"n_iter": 1, |
|
"steps": 20, |
|
"cfg_scale": 6, |
|
"width": 1152, |
|
"height": 640, |
|
"restore_faces": True, |
|
"include_init_images": True, |
|
"override_settings": {}, |
|
"override_settings_restore_afterwards": True |
|
} |
|
response = requests.post(url, json=data) |
|
if response.status_code == 200: |
|
return response.content |
|
else: |
|
try: |
|
error_data = response.json() |
|
print("Error:") |
|
print(str(error_data)) |
|
|
|
except json.JSONDecodeError: |
|
print(f"Error: Unable to parse JSON error data.") |
|
return None |
|
|
|
output_images = [] |
|
output_images.append(send_request(x_path,y_folder, y_paths[0])) |
|
output_paths = [] |
|
|
|
for i in range(1, len(y_paths)): |
|
result_image = output_images[i-1] |
|
temp_image_path = os.path.join(output_folder, f"temp_image_{i}.png") |
|
data = json.loads(result_image) |
|
encoded_image = data["images"][0] |
|
with open(temp_image_path, "wb") as f: |
|
f.write(base64.b64decode(encoded_image)) |
|
output_paths.append(temp_image_path) |
|
result = send_request(y_paths[i], y_folder, temp_image_path) |
|
output_images.append(result) |
|
print(f"Written data for frame {i}:") |
|
|
|
|
|
|