|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- BipedalWalker-v3 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: RecurrentPPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 240.11 +/- 82.53 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: BipedalWalker-v3 |
|
type: BipedalWalker-v3 |
|
--- |
|
|
|
# **RecurrentPPO** Agent playing **BipedalWalker-v3** |
|
This is a trained model of a **RecurrentPPO** agent playing **BipedalWalker-v3** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m utils.load_from_hub --algo ppo_lstm --env BipedalWalker-v3 -orga Chris1 -f logs/ |
|
python enjoy.py --algo ppo_lstm --env BipedalWalker-v3 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python train.py --algo ppo_lstm --env BipedalWalker-v3 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m utils.push_to_hub --algo ppo_lstm --env BipedalWalker-v3 -f logs/ -orga Chris1 |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 256), |
|
('clip_range', 0.18), |
|
('ent_coef', 0.0), |
|
('gae_lambda', 0.95), |
|
('gamma', 0.999), |
|
('learning_rate', 0.0003), |
|
('n_envs', 32), |
|
('n_epochs', 10), |
|
('n_steps', 256), |
|
('n_timesteps', 5000000.0), |
|
('normalize', True), |
|
('policy', 'MlpLstmPolicy'), |
|
('policy_kwargs', |
|
'dict( ortho_init=False, activation_fn=nn.ReLU, ' |
|
'lstm_hidden_size=64, enable_critic_lstm=True, ' |
|
'net_arch=[dict(pi=[64], vf=[64])] )'), |
|
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) |
|
``` |
|
|