Chikashi's picture
update model card README.md
52128ba
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikihow
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-wikihow_3epoch
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: wikihow
          type: wikihow
          args: all
        metrics:
          - name: Rouge1
            type: rouge
            value: 25.5784

t5-small-finetuned-wikihow_3epoch

This model is a fine-tuned version of t5-small on the wikihow dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5163
  • Rouge1: 25.5784
  • Rouge2: 8.9929
  • Rougel: 21.5345
  • Rougelsum: 24.9382
  • Gen Len: 18.384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.9421 0.25 5000 2.6545 23.2336 7.5502 19.5899 22.5521 18.4076
2.8411 0.51 10000 2.6103 24.3524 8.2068 20.5238 23.6679 18.2606
2.7983 0.76 15000 2.5836 24.8169 8.4826 20.8765 24.1686 18.3211
2.7743 1.02 20000 2.5627 24.9904 8.5625 21.0344 24.3416 18.3786
2.7452 1.27 25000 2.5508 25.1497 8.6872 21.152 24.4751 18.3524
2.7353 1.53 30000 2.5384 25.2909 8.7408 21.2344 24.629 18.4453
2.7261 1.78 35000 2.5322 25.3748 8.7802 21.312 24.7191 18.3754
2.7266 2.03 40000 2.5265 25.4095 8.8915 21.3871 24.7685 18.4013
2.706 2.29 45000 2.5211 25.4372 8.8926 21.4124 24.7902 18.3776
2.7073 2.54 50000 2.5176 25.4925 8.9668 21.5103 24.8608 18.4303
2.703 2.8 55000 2.5163 25.5784 8.9929 21.5345 24.9382 18.384

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6