bert2gpt2_med_v3 / README.md
Chemsseddine's picture
Update README.md
5b4cadb
|
raw
history blame
2.56 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bert2gpt2_med_ml_orange_summ-finetuned_med_sum_new
    results: []

bert2gpt2_med_ml_orange_summ-finetuned_med_sum_new

This model is a fine-tuned version of Chemsseddine/bert2gpt2_med_v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5474
  • Rouge1: 31.8871
  • Rouge2: 14.4411
  • Rougel: 31.6716
  • Rougelsum: 31.579
  • Gen Len: 22.8412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.5621 1.0 900 1.9724 30.3731 13.8412 29.9606 29.9716 22.6353
1.3692 2.0 1800 1.9634 29.6409 13.7674 29.5202 29.5207 22.5059
0.8308 3.0 2700 2.1431 30.9317 14.5594 30.8021 30.7287 22.6118
0.4689 4.0 3600 2.2970 30.1132 14.6407 29.9657 30.0182 23.3235
0.2875 5.0 4500 2.3787 30.9378 14.7108 30.861 30.9097 22.7529
0.1564 6.0 5400 2.4137 30.5338 13.9702 30.1252 30.1975 23.1588
0.1007 7.0 6300 2.4822 30.872 14.9353 30.835 30.7694 23.0529
0.0783 8.0 7200 2.4974 29.9825 14.1702 29.7507 29.7271 23.1882
0.0504 9.0 8100 2.5175 31.96 15.0705 31.9669 31.9839 23.0588
0.0339 10.0 9000 2.5474 31.8871 14.4411 31.6716 31.579 22.8412

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1