whisper-tiny-zh / README.md
CheeLi03's picture
Upload tokenizer
5bae61e verified
|
raw
history blame
2.02 kB
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - zh
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Chinese - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: cmn_hans_cn
          split: None
          args: 'config: zh split: test'
        metrics:
          - type: wer
            value: 38.568340285601195
            name: Wer

Whisper Tiny Chinese - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5500
  • Wer: 38.5683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.182 4.3668 1000 0.4832 42.5418
0.0473 8.7336 2000 0.5039 38.0568
0.0121 13.1004 3000 0.5371 40.1699
0.0079 17.4672 4000 0.5500 38.5683

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1