metadata
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ViT-Bert_Mimic
results: []
ViT-Bert_Mimic
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1692
- Rouge1: 20.3071
- Rouge2: 17.0769
- Rougel: 20.3425
- Rougelsum: 20.2544
- Gen Len: 17.62
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 250 | 0.1710 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 |
0.3208 | 2.0 | 500 | 0.1424 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 |
0.3208 | 3.0 | 750 | 0.1396 | 28.6163 | 23.3316 | 28.7485 | 28.5768 | 15.76 |
0.087 | 4.0 | 1000 | 0.1349 | 15.1174 | 12.3333 | 15.1103 | 15.0938 | 18.16 |
0.087 | 5.0 | 1250 | 0.1373 | 1.5 | 0.6667 | 1.5 | 1.5 | 19.8 |
0.0621 | 6.0 | 1500 | 0.1418 | 29.7634 | 24.3915 | 29.9052 | 29.7154 | 16.0 |
0.0621 | 7.0 | 1750 | 0.1453 | 1.0 | 1.0 | 1.0 | 1.0 | 19.92 |
0.0415 | 8.0 | 2000 | 0.1504 | 6.75 | 5.6667 | 6.75 | 6.75 | 19.22 |
0.0415 | 9.0 | 2250 | 0.1547 | 18.9444 | 16.7436 | 19.1202 | 18.9032 | 18.06 |
0.0254 | 10.0 | 2500 | 0.1591 | 19.2342 | 15.6667 | 19.2782 | 19.1123 | 17.44 |
0.0254 | 11.0 | 2750 | 0.1601 | 19.9154 | 17.3654 | 20.011 | 19.8499 | 17.91 |
0.0147 | 12.0 | 3000 | 0.1647 | 16.9972 | 13.0769 | 16.9972 | 16.9154 | 17.96 |
0.0147 | 13.0 | 3250 | 0.1676 | 22.2859 | 16.9093 | 22.4548 | 22.1609 | 16.66 |
0.0094 | 14.0 | 3500 | 0.1684 | 20.2714 | 16.7308 | 20.4544 | 20.2507 | 17.47 |
0.0094 | 15.0 | 3750 | 0.1692 | 20.3071 | 17.0769 | 20.3425 | 20.2544 | 17.62 |
Framework versions
- Transformers 4.37.1
- Pytorch 1.13.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.1