Chat-UniVi commited on
Commit
5d71f88
·
verified ·
1 Parent(s): 1b8dadb

Upload 9 files

Browse files
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"architectures": ["MoeForCausalLM"], "auto_map": {"AutoConfig": "configuration_moe_plus_plus.MoeConfig", "AutoModelForCausalLM": "modeling_moe_plus_plus.MoeForCausalLM"}, "model_type": "MoE++", "vocab_size": 65536, "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 0, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.01, "intermediate_size": 4096, "max_position_embeddings": 2048, "num_attention_heads": 16, "num_key_value_heads": 16, "num_hidden_layers": 24, "num_experts": [20], "moe_use_mixtral_gating": false, "moe_2layer_gate": false, "moe_use_logits_norm": true, "moe_gate_norm_std": 1.0, "moe_feature_no_mul_topk": true, "sliding_window": null, "moe_expert_interval": 1, "rms_norm_eps": 1e-06, "rotary_percent": 1.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "use_cache": true, "transformers_version": "4.33.1", "rope_theta": 10000}
configuration_moe_plus_plus.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
12
+
13
+
14
+ class MoeConfig(PretrainedConfig):
15
+
16
+ model_type = "MoE++"
17
+ keys_to_ignore_at_inference = ["past_key_values"]
18
+
19
+ def __init__(
20
+ self,
21
+ vocab_size=32000,
22
+ hidden_size=4096,
23
+ intermediate_size=11008,
24
+ num_hidden_layers=32,
25
+ num_attention_heads=32,
26
+ num_key_value_heads=None,
27
+ hidden_act="silu",
28
+ max_position_embeddings=2048,
29
+ initializer_range=0.02,
30
+ rms_norm_eps=1e-6,
31
+ use_cache=True,
32
+ pad_token_id=None,
33
+ bos_token_id=1,
34
+ eos_token_id=2,
35
+ pretraining_tp=1,
36
+ tie_word_embeddings=False,
37
+ rope_theta=10000.0,
38
+ rope_scaling=None,
39
+ num_experts=[32],
40
+ moe_expert_interval=1,
41
+ moe_use_mixtral_gating=False,
42
+ moe_2layer_gate=True,
43
+ moe_use_logits_norm=False,
44
+ moe_gate_norm_std=1.0,
45
+ moe_feature_no_mul_topk=False,
46
+
47
+ **kwargs,
48
+ ):
49
+ self.vocab_size = vocab_size
50
+ self.max_position_embeddings = max_position_embeddings
51
+ self.hidden_size = hidden_size
52
+ self.intermediate_size = intermediate_size
53
+ self.num_hidden_layers = num_hidden_layers
54
+ self.num_attention_heads = num_attention_heads
55
+
56
+ # for backward compatibility
57
+ if num_key_value_heads is None:
58
+ num_key_value_heads = num_attention_heads
59
+
60
+ self.num_key_value_heads = num_key_value_heads
61
+ self.hidden_act = hidden_act
62
+ self.initializer_range = initializer_range
63
+ self.rms_norm_eps = rms_norm_eps
64
+ self.pretraining_tp = pretraining_tp
65
+ self.use_cache = use_cache
66
+ self.rope_theta = rope_theta
67
+ self.rope_scaling = rope_scaling
68
+ self._rope_scaling_validation()
69
+ self.num_experts = num_experts
70
+ self.moe_expert_interval = moe_expert_interval
71
+ self.moe_use_mixtral_gating = moe_use_mixtral_gating
72
+ self.moe_2layer_gate = moe_2layer_gate
73
+ self.moe_use_logits_norm = moe_use_logits_norm
74
+ self.moe_gate_norm_std = moe_gate_norm_std
75
+ self.moe_feature_no_mul_topk = moe_feature_no_mul_topk
76
+
77
+ super().__init__(
78
+ pad_token_id=pad_token_id,
79
+ bos_token_id=bos_token_id,
80
+ eos_token_id=eos_token_id,
81
+ tie_word_embeddings=tie_word_embeddings,
82
+ **kwargs,
83
+ )
84
+
85
+ def _rope_scaling_validation(self):
86
+ """
87
+ Validate the `rope_scaling` configuration.
88
+ """
89
+ if self.rope_scaling is None:
90
+ return
91
+
92
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
93
+ raise ValueError(
94
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
95
+ f"got {self.rope_scaling}"
96
+ )
97
+ rope_scaling_type = self.rope_scaling.get("type", None)
98
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
99
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "ntk"]:
100
+ raise ValueError(
101
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
102
+ )
103
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
104
+ raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_from_model_config": true, "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 0, "transformers_version": "4.33.1"}
modeling_moe_plus_plus.py ADDED
@@ -0,0 +1,960 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+ import math
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
12
+
13
+ from transformers.activations import ACT2FN
14
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
15
+ from transformers.modeling_utils import PreTrainedModel
16
+ from transformers.utils import logging
17
+ from .configuration_moe_plus_plus import MoeConfig
18
+ from .moe_plus_plus_layer import MOE
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ _CONFIG_FOR_DOC = "MoeConfig"
23
+
24
+
25
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
26
+ def _make_causal_mask(
27
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
28
+ ):
29
+ """
30
+ Make causal mask used for bi-directional self-attention.
31
+ """
32
+ bsz, tgt_len = input_ids_shape
33
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
34
+ mask_cond = torch.arange(mask.size(-1), device=device)
35
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
36
+ mask = mask.to(dtype)
37
+
38
+ if past_key_values_length > 0:
39
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
40
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
41
+
42
+
43
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
44
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
45
+ """
46
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
47
+ """
48
+ bsz, src_len = mask.size()
49
+ tgt_len = tgt_len if tgt_len is not None else src_len
50
+
51
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
52
+
53
+ inverted_mask = 1.0 - expanded_mask
54
+
55
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
56
+
57
+
58
+ class RMSNorm(nn.Module):
59
+ def __init__(self, hidden_size, eps=1e-6):
60
+ """
61
+ RMSNorm is equivalent to T5LayerNorm
62
+ """
63
+ super().__init__()
64
+ self.weight = nn.Parameter(torch.ones(hidden_size))
65
+ self.variance_epsilon = eps
66
+
67
+ def forward(self, hidden_states):
68
+ input_dtype = hidden_states.dtype
69
+ hidden_states = hidden_states.to(torch.float32)
70
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
71
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
72
+ return self.weight * hidden_states.to(input_dtype)
73
+
74
+
75
+ class RotaryEmbedding(torch.nn.Module):
76
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
77
+ super().__init__()
78
+
79
+ self.dim = dim
80
+ self.max_position_embeddings = max_position_embeddings
81
+ self.base = base
82
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
83
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
84
+
85
+ # Build here to make `torch.jit.trace` work.
86
+ self._set_cos_sin_cache(
87
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
88
+ )
89
+
90
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
91
+ self.max_seq_len_cached = seq_len
92
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
93
+
94
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
95
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
96
+ emb = torch.cat((freqs, freqs), dim=-1)
97
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
98
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
99
+
100
+ def forward(self, x, seq_len=None):
101
+ # x: [bs, num_attention_heads, seq_len, head_size]
102
+ if seq_len > self.max_seq_len_cached:
103
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
104
+
105
+ return (
106
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
107
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
108
+ )
109
+
110
+
111
+ class LinearScalingRotaryEmbedding(RotaryEmbedding):
112
+ """RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
113
+
114
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
115
+ self.scaling_factor = scaling_factor
116
+ super().__init__(dim, max_position_embeddings, base, device)
117
+
118
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
119
+ self.max_seq_len_cached = seq_len
120
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
121
+ t = t / self.scaling_factor
122
+
123
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
124
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
125
+ emb = torch.cat((freqs, freqs), dim=-1)
126
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
127
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
128
+
129
+
130
+ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
131
+ """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
132
+
133
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
134
+ self.scaling_factor = scaling_factor
135
+ super().__init__(dim, max_position_embeddings, base, device)
136
+
137
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
138
+ self.max_seq_len_cached = seq_len
139
+
140
+ if seq_len > self.max_position_embeddings:
141
+ base = self.base * (
142
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
143
+ ) ** (self.dim / (self.dim - 2))
144
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
145
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
146
+
147
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
148
+
149
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
150
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
151
+ emb = torch.cat((freqs, freqs), dim=-1)
152
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
153
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
154
+
155
+
156
+
157
+ class NTKScalingRotaryEmbedding(torch.nn.Module):
158
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scaling_factor=100, device=None):
159
+ super().__init__()
160
+
161
+ self.dim = dim
162
+ self.max_position_embeddings = max_position_embeddings
163
+ self.base = base * scaling_factor
164
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
165
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
166
+
167
+ # Build here to make `torch.jit.trace` work.
168
+ self._set_cos_sin_cache(
169
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
170
+ )
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
176
+ emb = torch.cat((freqs, freqs), dim=-1)
177
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
178
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
179
+
180
+ def forward(self, x, seq_len=None):
181
+ if seq_len > self.max_seq_len_cached:
182
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
183
+
184
+ return (
185
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
186
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
187
+ )
188
+
189
+ def rotate_half(x):
190
+ """Rotates half the hidden dims of the input."""
191
+ x1 = x[..., : x.shape[-1] // 2]
192
+ x2 = x[..., x.shape[-1] // 2 :]
193
+ return torch.cat((-x2, x1), dim=-1)
194
+
195
+
196
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
197
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
198
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
199
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
200
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
201
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
202
+ q_embed = (q * cos) + (rotate_half(q) * sin)
203
+ k_embed = (k * cos) + (rotate_half(k) * sin)
204
+ return q_embed, k_embed
205
+
206
+
207
+ class MLP(nn.Module):
208
+ def __init__(self, config):
209
+ super().__init__()
210
+ self.config = config
211
+ self.hidden_size = config.hidden_size
212
+ self.intermediate_size = config.intermediate_size
213
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
214
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
215
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
216
+ self.act_fn = ACT2FN[config.hidden_act]
217
+
218
+ def forward(self, x):
219
+ if self.config.pretraining_tp > 1:
220
+ slice = self.intermediate_size // self.config.pretraining_tp
221
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
222
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
223
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
224
+
225
+ gate_proj = torch.cat(
226
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
227
+ )
228
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
229
+
230
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
231
+ down_proj = [
232
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
233
+ ]
234
+ down_proj = sum(down_proj)
235
+ else:
236
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
237
+
238
+ return down_proj
239
+
240
+
241
+ class MLPMoE(nn.Module):
242
+ def __init__(self, config):
243
+ super().__init__()
244
+ self.config = config
245
+ self.hidden_size = config.hidden_size
246
+ self.intermediate_size = config.intermediate_size
247
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
248
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+ def swiglu(x):
250
+ x = torch.chunk(x, 2, dim=-1)
251
+ return F.silu(x[0]) * x[1]
252
+ self.act_fn = swiglu
253
+
254
+ def forward(self, x):
255
+ down_proj = self.down_proj(self.act_fn(self.up_proj(x)))
256
+
257
+ return down_proj
258
+
259
+
260
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
261
+ """
262
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
263
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
264
+ """
265
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
266
+ if n_rep == 1:
267
+ return hidden_states
268
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
269
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
270
+
271
+
272
+ class Attention(nn.Module):
273
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
274
+
275
+ def __init__(self, config: MoeConfig):
276
+ super().__init__()
277
+ self.config = config
278
+ self.hidden_size = config.hidden_size
279
+ self.num_heads = config.num_attention_heads
280
+ self.head_dim = self.hidden_size // self.num_heads
281
+ self.num_key_value_heads = config.num_key_value_heads
282
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
283
+ self.max_position_embeddings = config.max_position_embeddings
284
+ self.rope_theta = config.rope_theta
285
+
286
+ if (self.head_dim * self.num_heads) != self.hidden_size:
287
+ raise ValueError(
288
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
289
+ f" and `num_heads`: {self.num_heads})."
290
+ )
291
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
292
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
293
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
294
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
295
+ self._init_rope()
296
+
297
+ def _init_rope(self):
298
+ if self.config.rope_scaling is None:
299
+ self.rotary_emb = RotaryEmbedding(
300
+ self.head_dim,
301
+ max_position_embeddings=self.max_position_embeddings,
302
+ base=self.rope_theta,
303
+ )
304
+ else:
305
+ scaling_type = self.config.rope_scaling["type"]
306
+ scaling_factor = self.config.rope_scaling["factor"]
307
+ if scaling_type == "linear":
308
+ self.rotary_emb = LinearScalingRotaryEmbedding(
309
+ self.head_dim,
310
+ max_position_embeddings=self.max_position_embeddings,
311
+ scaling_factor=scaling_factor,
312
+ base=self.rope_theta,
313
+ )
314
+ elif scaling_type == "dynamic":
315
+ self.rotary_emb = DynamicNTKScalingRotaryEmbedding(
316
+ self.head_dim,
317
+ max_position_embeddings=self.max_position_embeddings,
318
+ scaling_factor=scaling_factor,
319
+ base=self.rope_theta,
320
+ )
321
+ elif scaling_type == "ntk":
322
+ self.rotary_emb = NTKScalingRotaryEmbedding(
323
+ self.head_dim,
324
+ max_position_embeddings=self.max_position_embeddings,
325
+ scaling_factor=scaling_factor,
326
+ base=self.rope_theta,
327
+ )
328
+ else:
329
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
330
+ print('-'*80)
331
+ print(f"USING COSTOM MODELING, scaling_type is {scaling_type}, scaling_factor is {scaling_factor}")
332
+
333
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
334
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
335
+
336
+ def forward(
337
+ self,
338
+ hidden_states: torch.Tensor,
339
+ attention_mask: Optional[torch.Tensor] = None,
340
+ position_ids: Optional[torch.LongTensor] = None,
341
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
342
+ output_attentions: bool = False,
343
+ use_cache: bool = False,
344
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
345
+ bsz, q_len, _ = hidden_states.size()
346
+
347
+ if self.config.pretraining_tp > 1:
348
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
349
+ query_slices = self.q_proj.weight.split(
350
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
351
+ )
352
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
353
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
354
+
355
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
356
+ query_states = torch.cat(query_states, dim=-1)
357
+
358
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
359
+ key_states = torch.cat(key_states, dim=-1)
360
+
361
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
362
+ value_states = torch.cat(value_states, dim=-1)
363
+
364
+ else:
365
+ query_states = self.q_proj(hidden_states)
366
+ key_states = self.k_proj(hidden_states)
367
+ value_states = self.v_proj(hidden_states)
368
+
369
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
370
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
371
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
372
+
373
+ kv_seq_len = key_states.shape[-2]
374
+ if past_key_value is not None:
375
+ kv_seq_len += past_key_value[0].shape[-2]
376
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
377
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
378
+
379
+ if past_key_value is not None:
380
+ # reuse k, v, self_attention
381
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
382
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
383
+
384
+ past_key_value = (key_states, value_states) if use_cache else None
385
+
386
+ # repeat k/v heads if n_kv_heads < n_heads
387
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
388
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
389
+
390
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
391
+
392
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
393
+ raise ValueError(
394
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
395
+ f" {attn_weights.size()}"
396
+ )
397
+
398
+ if attention_mask is not None:
399
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
400
+ raise ValueError(
401
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
402
+ )
403
+ attn_weights = attn_weights + attention_mask
404
+
405
+ # upcast attention to fp32
406
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
407
+ attn_output = torch.matmul(attn_weights, value_states)
408
+
409
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
410
+ raise ValueError(
411
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
412
+ f" {attn_output.size()}"
413
+ )
414
+
415
+ attn_output = attn_output.transpose(1, 2).contiguous()
416
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
417
+
418
+ if self.config.pretraining_tp > 1:
419
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
420
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
421
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
422
+ else:
423
+ attn_output = self.o_proj(attn_output)
424
+
425
+ if not output_attentions:
426
+ attn_weights = None
427
+
428
+ return attn_output, attn_weights, past_key_value
429
+
430
+
431
+ class DecoderLayer(nn.Module):
432
+ def __init__(self, config: MoeConfig, layer_id: int):
433
+ super().__init__()
434
+ self.hidden_size = config.hidden_size
435
+ self.self_attn = Attention(config=config)
436
+
437
+ if config.moe_expert_interval == 1:
438
+ self.mlp = MOE(config.hidden_size,
439
+ MLPMoE(config),
440
+ num_experts=config.num_experts[0],
441
+ moe_use_mixtral_gating=config.moe_use_mixtral_gating,
442
+ moe_2layer_gate=config.moe_2layer_gate,
443
+ moe_use_logits_norm=config.moe_use_logits_norm,
444
+ moe_gate_norm_std=config.moe_gate_norm_std,
445
+ moe_feature_no_mul_topk=config.moe_feature_no_mul_topk)
446
+ else:
447
+ if (layer_id + 1) % config.moe_expert_interval == 0:
448
+ self.mlp = MOE(config.hidden_size,
449
+ MLPMoE(config),
450
+ num_experts=config.num_experts[0],
451
+ moe_use_mixtral_gating=config.moe_use_mixtral_gating,
452
+ moe_2layer_gate=config.moe_2layer_gate,
453
+ moe_use_logits_norm=config.moe_use_logits_norm,
454
+ moe_gate_norm_std=config.moe_gate_norm_std,
455
+ moe_feature_no_mul_topk=config.moe_feature_no_mul_topk)
456
+ else:
457
+ self.mlp = MLP(config)
458
+
459
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
460
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
461
+
462
+ def forward(
463
+ self,
464
+ hidden_states: torch.Tensor,
465
+ attention_mask: Optional[torch.Tensor] = None,
466
+ position_ids: Optional[torch.LongTensor] = None,
467
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
468
+ output_attentions: Optional[bool] = False,
469
+ use_cache: Optional[bool] = False,
470
+ gate_residual = None,
471
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
472
+ """
473
+ Args:
474
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
475
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
476
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
477
+ output_attentions (`bool`, *optional*):
478
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
479
+ returned tensors for more detail.
480
+ use_cache (`bool`, *optional*):
481
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
482
+ (see `past_key_values`).
483
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
484
+ """
485
+
486
+ residual = hidden_states
487
+
488
+ hidden_states = self.input_layernorm(hidden_states)
489
+
490
+ # Self Attention
491
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
492
+ hidden_states=hidden_states,
493
+ attention_mask=attention_mask,
494
+ position_ids=position_ids,
495
+ past_key_value=past_key_value,
496
+ output_attentions=output_attentions,
497
+ use_cache=use_cache,
498
+ )
499
+ hidden_states = residual + hidden_states
500
+
501
+ # Fully Connected
502
+ residual = hidden_states
503
+ hidden_states = self.post_attention_layernorm(hidden_states)
504
+ hidden_states, gate_residual = self.mlp(hidden_states, gate_residual=gate_residual)
505
+ hidden_states = residual + hidden_states
506
+
507
+ outputs = (hidden_states,)
508
+
509
+ if output_attentions:
510
+ outputs += (self_attn_weights,)
511
+
512
+ if use_cache:
513
+ outputs += (present_key_value,)
514
+
515
+ return outputs, gate_residual
516
+
517
+ class MoePreTrainedModel(PreTrainedModel):
518
+ config_class = MoeConfig
519
+ base_model_prefix = "model"
520
+ supports_gradient_checkpointing = True
521
+ _no_split_modules = ["DecoderLayer"]
522
+ _skip_keys_device_placement = "past_key_values"
523
+
524
+ def _init_weights(self, module):
525
+ std = self.config.initializer_range
526
+ if isinstance(module, nn.Linear):
527
+ module.weight.data.normal_(mean=0.0, std=std)
528
+ if module.bias is not None:
529
+ module.bias.data.zero_()
530
+ elif isinstance(module, nn.Embedding):
531
+ module.weight.data.normal_(mean=0.0, std=std)
532
+ if module.padding_idx is not None:
533
+ module.weight.data[module.padding_idx].zero_()
534
+
535
+ def _set_gradient_checkpointing(self, module, value=False):
536
+ if isinstance(module, MoeModel):
537
+ module.gradient_checkpointing = value
538
+
539
+ class MoeModel(MoePreTrainedModel):
540
+ """
541
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`]
542
+
543
+ Args:
544
+ config: MoeConfig
545
+ """
546
+
547
+ def __init__(self, config: MoeConfig):
548
+ super().__init__(config)
549
+ self.padding_idx = config.pad_token_id
550
+ self.vocab_size = config.vocab_size
551
+
552
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
553
+ self.layers = nn.ModuleList([DecoderLayer(config, _) for _ in range(config.num_hidden_layers)])
554
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
555
+
556
+ self.gradient_checkpointing = False
557
+ # Initialize weights and apply final processing
558
+ self.post_init()
559
+
560
+ def get_input_embeddings(self):
561
+ return self.embed_tokens
562
+
563
+ def set_input_embeddings(self, value):
564
+ self.embed_tokens = value
565
+
566
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
567
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
568
+ # create causal mask
569
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
570
+ combined_attention_mask = None
571
+ if input_shape[-1] > 1:
572
+ combined_attention_mask = _make_causal_mask(
573
+ input_shape,
574
+ inputs_embeds.dtype,
575
+ device=inputs_embeds.device,
576
+ past_key_values_length=past_key_values_length,
577
+ )
578
+
579
+ if attention_mask is not None:
580
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
581
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
582
+ inputs_embeds.device
583
+ )
584
+ combined_attention_mask = (
585
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
586
+ )
587
+
588
+ return combined_attention_mask
589
+
590
+ def forward(
591
+ self,
592
+ input_ids: torch.LongTensor = None,
593
+ attention_mask: Optional[torch.Tensor] = None,
594
+ position_ids: Optional[torch.LongTensor] = None,
595
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
596
+ inputs_embeds: Optional[torch.FloatTensor] = None,
597
+ use_cache: Optional[bool] = None,
598
+ output_attentions: Optional[bool] = None,
599
+ output_hidden_states: Optional[bool] = None,
600
+ return_dict: Optional[bool] = None,
601
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
602
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
603
+ output_hidden_states = (
604
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
605
+ )
606
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
607
+
608
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
609
+
610
+ # retrieve input_ids and inputs_embeds
611
+ if input_ids is not None and inputs_embeds is not None:
612
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
613
+ elif input_ids is not None:
614
+ batch_size, seq_length = input_ids.shape
615
+ elif inputs_embeds is not None:
616
+ batch_size, seq_length, _ = inputs_embeds.shape
617
+ else:
618
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
619
+
620
+ seq_length_with_past = seq_length
621
+ past_key_values_length = 0
622
+
623
+ if past_key_values is not None:
624
+ past_key_values_length = past_key_values[0][0].shape[2]
625
+ seq_length_with_past = seq_length_with_past + past_key_values_length
626
+
627
+ if position_ids is None:
628
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
629
+ position_ids = torch.arange(
630
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
631
+ )
632
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
633
+ else:
634
+ position_ids = position_ids.view(-1, seq_length).long()
635
+
636
+ if inputs_embeds is None:
637
+ inputs_embeds = self.embed_tokens(input_ids)
638
+ # embed positions
639
+ if attention_mask is None:
640
+ attention_mask = torch.ones(
641
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
642
+ )
643
+ attention_mask = self._prepare_decoder_attention_mask(
644
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
645
+ )
646
+
647
+ hidden_states = inputs_embeds
648
+
649
+ if self.gradient_checkpointing and self.training:
650
+ if use_cache:
651
+ logger.warning_once(
652
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
653
+ )
654
+ use_cache = False
655
+
656
+ # decoder layers
657
+ all_hidden_states = () if output_hidden_states else None
658
+ all_self_attns = () if output_attentions else None
659
+ next_decoder_cache = () if use_cache else None
660
+
661
+ gate_residual = None
662
+
663
+ for idx, decoder_layer in enumerate(self.layers):
664
+ if output_hidden_states:
665
+ all_hidden_states += (hidden_states,)
666
+
667
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
668
+
669
+ if self.gradient_checkpointing and self.training:
670
+
671
+ def create_custom_forward(module):
672
+ def custom_forward(*inputs):
673
+ # None for past_key_value
674
+ return module(*inputs, past_key_value, output_attentions)
675
+
676
+ return custom_forward
677
+
678
+ layer_outputs, gate_residual = torch.utils.checkpoint.checkpoint(
679
+ create_custom_forward(decoder_layer),
680
+ hidden_states,
681
+ attention_mask,
682
+ position_ids,
683
+ past_key_value,
684
+ output_attentions,
685
+ use_cache,
686
+ gate_residual,
687
+ )
688
+ else:
689
+ layer_outputs, gate_residual = decoder_layer(
690
+ hidden_states,
691
+ attention_mask=attention_mask,
692
+ position_ids=position_ids,
693
+ past_key_value=past_key_value,
694
+ output_attentions=output_attentions,
695
+ use_cache=use_cache,
696
+ gate_residual=gate_residual,
697
+ )
698
+
699
+ hidden_states = layer_outputs[0]
700
+
701
+ if use_cache:
702
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
703
+
704
+ if output_attentions:
705
+ all_self_attns += (layer_outputs[1],)
706
+
707
+ hidden_states = self.norm(hidden_states)
708
+
709
+ # add hidden states from the last decoder layer
710
+ if output_hidden_states:
711
+ all_hidden_states += (hidden_states,)
712
+
713
+ next_cache = next_decoder_cache if use_cache else None
714
+ if not return_dict:
715
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
716
+ return BaseModelOutputWithPast(
717
+ last_hidden_state=hidden_states,
718
+ past_key_values=next_cache,
719
+ hidden_states=all_hidden_states,
720
+ attentions=all_self_attns,
721
+ )
722
+
723
+
724
+ class MoeForCausalLM(MoePreTrainedModel):
725
+ _tied_weights_keys = ["lm_head.weight"]
726
+
727
+ def __init__(self, config):
728
+ super().__init__(config)
729
+ self.model = MoeModel(config)
730
+ self.vocab_size = config.vocab_size
731
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
732
+
733
+ # Initialize weights and apply final processing
734
+ self.post_init()
735
+
736
+ def get_input_embeddings(self):
737
+ return self.model.embed_tokens
738
+
739
+ def set_input_embeddings(self, value):
740
+ self.model.embed_tokens = value
741
+
742
+ def get_output_embeddings(self):
743
+ return self.lm_head
744
+
745
+ def set_output_embeddings(self, new_embeddings):
746
+ self.lm_head = new_embeddings
747
+
748
+ def set_decoder(self, decoder):
749
+ self.model = decoder
750
+
751
+ def get_decoder(self):
752
+ return self.model
753
+
754
+ def forward(
755
+ self,
756
+ input_ids: torch.LongTensor = None,
757
+ attention_mask: Optional[torch.Tensor] = None,
758
+ position_ids: Optional[torch.LongTensor] = None,
759
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
760
+ inputs_embeds: Optional[torch.FloatTensor] = None,
761
+ labels: Optional[torch.LongTensor] = None,
762
+ use_cache: Optional[bool] = None,
763
+ output_attentions: Optional[bool] = None,
764
+ output_hidden_states: Optional[bool] = None,
765
+ return_dict: Optional[bool] = None,
766
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
767
+
768
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
769
+ output_hidden_states = (
770
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
771
+ )
772
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
773
+
774
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
775
+ outputs = self.model(
776
+ input_ids=input_ids,
777
+ attention_mask=attention_mask,
778
+ position_ids=position_ids,
779
+ past_key_values=past_key_values,
780
+ inputs_embeds=inputs_embeds,
781
+ use_cache=use_cache,
782
+ output_attentions=output_attentions,
783
+ output_hidden_states=output_hidden_states,
784
+ return_dict=return_dict,
785
+ )
786
+
787
+ hidden_states = outputs[0]
788
+ if self.config.pretraining_tp > 1:
789
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
790
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
791
+ logits = torch.cat(logits, dim=-1)
792
+ else:
793
+ logits = self.lm_head(hidden_states)
794
+ logits = logits.float()
795
+
796
+ loss = None
797
+ if labels is not None:
798
+ # Shift so that tokens < n predict n
799
+ shift_logits = logits[..., :-1, :].contiguous()
800
+ shift_labels = labels[..., 1:].contiguous()
801
+ # Flatten the tokens
802
+ loss_fct = CrossEntropyLoss()
803
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
804
+ shift_labels = shift_labels.view(-1)
805
+ # Enable model parallelism
806
+ shift_labels = shift_labels.to(shift_logits.device)
807
+ loss = loss_fct(shift_logits, shift_labels)
808
+
809
+ if not return_dict:
810
+ output = (logits,) + outputs[1:]
811
+ return (loss,) + output if loss is not None else output
812
+
813
+ return CausalLMOutputWithPast(
814
+ loss=loss,
815
+ logits=logits,
816
+ past_key_values=outputs.past_key_values,
817
+ hidden_states=outputs.hidden_states,
818
+ attentions=outputs.attentions,
819
+ )
820
+
821
+ def prepare_inputs_for_generation(
822
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
823
+ ):
824
+ if past_key_values:
825
+ input_ids = input_ids[:, -1:]
826
+
827
+ position_ids = kwargs.get("position_ids", None)
828
+ if attention_mask is not None and position_ids is None:
829
+ # create position_ids on the fly for batch generation
830
+ position_ids = attention_mask.long().cumsum(-1) - 1
831
+ position_ids.masked_fill_(attention_mask == 0, 1)
832
+ if past_key_values:
833
+ position_ids = position_ids[:, -1].unsqueeze(-1)
834
+
835
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
836
+ if inputs_embeds is not None and past_key_values is None:
837
+ model_inputs = {"inputs_embeds": inputs_embeds}
838
+ else:
839
+ model_inputs = {"input_ids": input_ids}
840
+
841
+ model_inputs.update(
842
+ {
843
+ "position_ids": position_ids,
844
+ "past_key_values": past_key_values,
845
+ "use_cache": kwargs.get("use_cache"),
846
+ "attention_mask": attention_mask,
847
+ }
848
+ )
849
+ return model_inputs
850
+
851
+ @staticmethod
852
+ def _reorder_cache(past_key_values, beam_idx):
853
+ reordered_past = ()
854
+ for layer_past in past_key_values:
855
+ reordered_past += (
856
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
857
+ )
858
+ return reordered_past
859
+
860
+
861
+ class ForSequenceClassification(MoePreTrainedModel):
862
+ def __init__(self, config):
863
+ super().__init__(config)
864
+ self.num_labels = config.num_labels
865
+ self.model = MoeModel(config)
866
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
867
+
868
+ # Initialize weights and apply final processing
869
+ self.post_init()
870
+
871
+ def get_input_embeddings(self):
872
+ return self.model.embed_tokens
873
+
874
+ def set_input_embeddings(self, value):
875
+ self.model.embed_tokens = value
876
+
877
+ def forward(
878
+ self,
879
+ input_ids: torch.LongTensor = None,
880
+ attention_mask: Optional[torch.Tensor] = None,
881
+ position_ids: Optional[torch.LongTensor] = None,
882
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
883
+ inputs_embeds: Optional[torch.FloatTensor] = None,
884
+ labels: Optional[torch.LongTensor] = None,
885
+ use_cache: Optional[bool] = None,
886
+ output_attentions: Optional[bool] = None,
887
+ output_hidden_states: Optional[bool] = None,
888
+ return_dict: Optional[bool] = None,
889
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
890
+
891
+
892
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
893
+
894
+ transformer_outputs = self.model(
895
+ input_ids,
896
+ attention_mask=attention_mask,
897
+ position_ids=position_ids,
898
+ past_key_values=past_key_values,
899
+ inputs_embeds=inputs_embeds,
900
+ use_cache=use_cache,
901
+ output_attentions=output_attentions,
902
+ output_hidden_states=output_hidden_states,
903
+ return_dict=return_dict,
904
+ )
905
+ hidden_states = transformer_outputs[0]
906
+ logits = self.score(hidden_states)
907
+
908
+ if input_ids is not None:
909
+ batch_size = input_ids.shape[0]
910
+ else:
911
+ batch_size = inputs_embeds.shape[0]
912
+
913
+ if self.config.pad_token_id is None and batch_size != 1:
914
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
915
+ if self.config.pad_token_id is None:
916
+ sequence_lengths = -1
917
+ else:
918
+ if input_ids is not None:
919
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
920
+ logits.device
921
+ )
922
+ else:
923
+ sequence_lengths = -1
924
+
925
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
926
+
927
+ loss = None
928
+ if labels is not None:
929
+ labels = labels.to(logits.device)
930
+ if self.config.problem_type is None:
931
+ if self.num_labels == 1:
932
+ self.config.problem_type = "regression"
933
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
934
+ self.config.problem_type = "single_label_classification"
935
+ else:
936
+ self.config.problem_type = "multi_label_classification"
937
+
938
+ if self.config.problem_type == "regression":
939
+ loss_fct = MSELoss()
940
+ if self.num_labels == 1:
941
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
942
+ else:
943
+ loss = loss_fct(pooled_logits, labels)
944
+ elif self.config.problem_type == "single_label_classification":
945
+ loss_fct = CrossEntropyLoss()
946
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
947
+ elif self.config.problem_type == "multi_label_classification":
948
+ loss_fct = BCEWithLogitsLoss()
949
+ loss = loss_fct(pooled_logits, labels)
950
+ if not return_dict:
951
+ output = (pooled_logits,) + transformer_outputs[1:]
952
+ return ((loss,) + output) if loss is not None else output
953
+
954
+ return SequenceClassifierOutputWithPast(
955
+ loss=loss,
956
+ logits=pooled_logits,
957
+ past_key_values=transformer_outputs.past_key_values,
958
+ hidden_states=transformer_outputs.hidden_states,
959
+ attentions=transformer_outputs.attentions,
960
+ )
moe_plus_plus_layer.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import typing
2
+ from collections.abc import Callable
3
+ from collections import defaultdict
4
+ from typing import Any, Dict, TYPE_CHECKING, Optional, Tuple, List
5
+
6
+ import torch
7
+ import copy
8
+
9
+ from torch import Tensor
10
+ from torch.nn import Module
11
+ import torch.nn.functional as F
12
+
13
+ if TYPE_CHECKING:
14
+ Base = Module[Tensor]
15
+ else:
16
+ Base = Module
17
+
18
+
19
+ MOE_TOP_K = 2
20
+ Constant = 2
21
+
22
+
23
+ class CopyExpert(torch.nn.Module):
24
+ def __init__(self, expert):
25
+ super(CopyExpert, self).__init__()
26
+ pass
27
+
28
+ def forward(self, inputs):
29
+ return inputs
30
+
31
+
32
+ class ZeroExpert(torch.nn.Module):
33
+ def __init__(self, expert):
34
+ super(ZeroExpert, self).__init__()
35
+ pass
36
+
37
+ def forward(self, inputs):
38
+ return torch.zeros_like(inputs).to(inputs.dtype).to(inputs.device)
39
+
40
+
41
+ class ConstantExpert(torch.nn.Module):
42
+ def __init__(self, expert):
43
+ super(ConstantExpert, self).__init__()
44
+ self.constant = torch.nn.Parameter(
45
+ torch.empty((expert.hidden_size)))
46
+ torch.nn.init.normal_(self.constant)
47
+
48
+ self.wg = torch.nn.Linear(expert.hidden_size, 2, bias=False)
49
+ self.softmax = torch.nn.Softmax(dim=-1)
50
+
51
+ def forward(self, inputs):
52
+ # print(inputs.size())
53
+ weight = self.wg(inputs)
54
+ weight = self.softmax(weight)
55
+ return torch.einsum('b,bd->bd', [weight[:, 0].type_as(inputs), inputs]) + torch.einsum(
56
+ 'b,d->bd', [weight[:, 1].type_as(inputs), self.constant.type_as(inputs)])
57
+
58
+
59
+ def gating(logits: Tensor, moe_use_mixtral_gating=False, moe_use_logits_norm=False, moe_gate_norm_std=1.0) -> Dict[int, List[Tuple[int, float]]]:
60
+ # gates shape [num_tokens, num_experts]
61
+ num_experts = logits.size(1)
62
+ if moe_use_mixtral_gating:
63
+ if moe_use_logits_norm:
64
+ target_std = moe_gate_norm_std
65
+ logits_std = logits.std(dim=1, keepdim=True)
66
+ logits = logits / (logits_std / target_std)
67
+ gates, indices = torch.topk(logits, k=MOE_TOP_K, dim=1)
68
+ gates = F.softmax(gates, dim=1)
69
+ else:
70
+ target_std = moe_gate_norm_std
71
+ if moe_use_logits_norm:
72
+ logits_std = logits.std(dim=1, keepdim=True)
73
+ gates = F.softmax(logits / (logits_std / target_std), dim=1)
74
+ else:
75
+ gates = F.softmax(logits, dim=1)
76
+ # gates shape [num_tokens, MOE_TOP_K]
77
+ # indices shape [num_tokens, MOE_TOP_K]
78
+ gates, indices = torch.topk(gates, k=MOE_TOP_K, dim=1)
79
+ gates = torch.where(indices==(num_experts-1), torch.zeros_like(gates).to(gates.dtype).to(gates.device), gates)
80
+ gates /= torch.sum(gates, dim=1, keepdim=True)
81
+
82
+ expert_info = defaultdict(list)
83
+ for expert_id in range(num_experts):
84
+ token_ids, score_ids = torch.nonzero(indices == expert_id, as_tuple=True)
85
+ expert_info[expert_id] = [token_ids, gates[token_ids, score_ids]]
86
+
87
+ return expert_info
88
+
89
+
90
+ class Router(Module):
91
+ def __init__(self,
92
+ model_dim: int,
93
+ num_experts: int,
94
+ moe_use_mixtral_gating: bool,
95
+ moe_2layer_gate: bool,
96
+ moe_use_logits_norm: bool,
97
+ moe_gate_norm_std: float,
98
+ ) -> None:
99
+ super().__init__()
100
+
101
+ if moe_2layer_gate:
102
+ self.wg = torch.nn.Sequential(
103
+ torch.nn.Linear(model_dim, num_experts * 8, bias=False).float(),
104
+ torch.nn.Tanh(),
105
+ torch.nn.Linear(num_experts * 8, num_experts, bias=False).float()).float()
106
+ else:
107
+ self.wg = torch.nn.Linear(model_dim, num_experts, bias=False).float()
108
+
109
+ self.gate_map = torch.nn.Linear(num_experts, num_experts, bias=False)
110
+
111
+ self.gate = gating
112
+ self.moe_use_mixtral_gating = moe_use_mixtral_gating
113
+ self.moe_use_logits_norm = moe_use_logits_norm
114
+ self.moe_gate_norm_std = moe_gate_norm_std
115
+
116
+ def forward(self, input: torch.Tensor, gate_residual=None) -> Dict[int, List[Tuple[int, float]]]:
117
+ if isinstance(self.wg, torch.nn.Linear):
118
+ if self.wg.weight.dtype != torch.float32:
119
+ self.wg = self.wg.float()
120
+ setattr(self.wg.weight, 'router', True)
121
+ else:
122
+ if self.wg[0].weight.dtype != torch.float32:
123
+ self.wg = self.wg.float()
124
+ setattr(self.wg[0].weight, "router", True)
125
+ setattr(self.wg[2].weight, "router", True)
126
+ input_fp32 = input.float()
127
+ logits = self.wg(input_fp32)
128
+
129
+ if gate_residual is not None:
130
+ gate_residual = self.gate_map(gate_residual.to(self.gate_map.weight.dtype))
131
+ logits += gate_residual
132
+
133
+ gate_output = self.gate(logits, self.moe_use_mixtral_gating, self.moe_use_logits_norm, self.moe_gate_norm_std)
134
+
135
+ return gate_output, logits
136
+
137
+
138
+ class Experts(torch.nn.Module):
139
+ def __init__(self, expert, num_local_experts=1):
140
+ super(Experts, self).__init__()
141
+
142
+ self.experts = torch.nn.ModuleList(
143
+ [copy.deepcopy(expert) for _ in range(num_local_experts - 2 - Constant)] +
144
+ [ConstantExpert(expert) for _ in range(Constant)] +
145
+ [CopyExpert(expert), ZeroExpert(expert)])
146
+
147
+ def forward(self, inputs):
148
+ raise NotImplementedError
149
+
150
+
151
+ class MOELayer(Base):
152
+ def __init__(self,
153
+ gate: Module,
154
+ experts: Module,
155
+ ep_size,
156
+ num_local_experts: int,
157
+ moe_use_mixtral_gating: bool,
158
+ moe_feature_no_mul_topk: bool) -> None:
159
+ super().__init__()
160
+ self.gate = gate
161
+ self.experts = experts
162
+ self.ep_size = ep_size
163
+ self.num_local_experts = num_local_experts
164
+ self.moe_use_mixtral_gating = moe_use_mixtral_gating
165
+ self.moe_feature_no_mul_topk = moe_feature_no_mul_topk
166
+
167
+ def forward(self, *input: Tensor, gate_residual=None, **kwargs: Any) -> Tensor:
168
+ d_model = input[0].shape[-1]
169
+ reshaped_input = input[0].reshape(-1, d_model)
170
+ output = torch.zeros_like(reshaped_input)
171
+ expert_info, gate_residual = self.gate(reshaped_input, gate_residual)
172
+ if not (self.moe_use_mixtral_gating or self.moe_feature_no_mul_topk):
173
+ reshaped_input *= MOE_TOP_K
174
+ for expert, token_indices_and_gates in expert_info.items():
175
+ indices, gating = token_indices_and_gates
176
+ gating = gating.unsqueeze(-1)
177
+ tokens = reshaped_input.index_select(dim=0, index=indices)
178
+ expert_output = self.experts.experts[expert](tokens)
179
+ expert_output *= gating
180
+ output.index_add_(dim=0, index=indices, source=expert_output)
181
+ output = output.reshape(input[0].shape)
182
+
183
+ return output, gate_residual
184
+
185
+
186
+ class MOE(torch.nn.Module):
187
+ def __init__(self,
188
+ hidden_size,
189
+ expert,
190
+ num_experts=1,
191
+ ep_size=1,
192
+ moe_use_mixtral_gating=False,
193
+ moe_2layer_gate=True,
194
+ moe_use_logits_norm=False,
195
+ moe_gate_norm_std=1.0,
196
+ moe_feature_no_mul_topk=False):
197
+ super(MOE, self).__init__()
198
+
199
+ self.ep_size = ep_size
200
+ self.num_experts = num_experts
201
+ self.num_local_experts = num_experts // self.ep_size
202
+ self.moe_use_mixtral_gating = moe_use_mixtral_gating
203
+ self.moe_2layer_gate = moe_2layer_gate
204
+ self.moe_use_logits_norm = moe_use_logits_norm
205
+ self.moe_gate_norm_std = moe_gate_norm_std
206
+ self.moe_feature_no_mul_topk = moe_feature_no_mul_topk
207
+
208
+ experts = Experts(expert, self.num_local_experts)
209
+ self.moe = MOELayer(Router(hidden_size,
210
+ num_experts,
211
+ self.moe_use_mixtral_gating,
212
+ self.moe_2layer_gate,
213
+ self.moe_use_logits_norm,
214
+ self.moe_gate_norm_std),
215
+ experts,
216
+ self.ep_size,
217
+ self.num_local_experts,
218
+ self.moe_use_mixtral_gating,
219
+ self.moe_feature_no_mul_topk,
220
+ )
221
+
222
+ def forward(self, hidden_states, used_token=None, gate_residual=None):
223
+ output, gate_residual = self.moe(hidden_states, used_token, gate_residual=gate_residual)
224
+ return output, gate_residual
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36ec9a4d6fd7cc78fbb9e4afd89fb04cba0381b08a842ca0b60826073821f594
3
+ size 994250
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"tokenizer_class": "LlamaTokenizer", "bos_token": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "pad_token": null, "add_bos_token": true, "add_eos_token": false, "clean_up_tokenization_spaces": false, "legacy": false, "model_max_length": 1000000000000000019884624838656, "sp_model_kwargs": {}}