SkipMoE / modeling_olmoe.py
chengyanwu
stuff
ccda2ec
# modeling_olmoe.py - Extended version of OLMo for custom training
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Callable, Dict, Optional, Tuple, Union, Any
# Import necessary components from transformers
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
# from transformers.modeling_layers import GradientCheckpointingLayer
from torch.utils.checkpoint import checkpoint
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
# from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs, is_torch_flex_attn_available, logging
from transformers import OlmoConfig
# Import flex attention components if available
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
# from transformers.integrations.flex_attention import make_flex_block_causal_mask
from functools import partial
# Define GradientCheckpointingLayer since it's missing
class GradientCheckpointingLayer(nn.Module):
gradient_checkpointing = False
def __call__(self, *args, **kwargs):
# Use checkpoint on `forward` when enabled
if self.gradient_checkpointing and self.training:
return checkpoint(self.forward, *args, **kwargs)
return super().__call__(*args, **kwargs)
def forward(self, *args, **kwargs):
# To be implemented by subclasses
raise NotImplementedError("Subclasses must implement `forward`")
import math
import functools
# Define our own dynamic_rope_update decorator and ROPE_INIT_FUNCTIONS
def dynamic_rope_update(func):
"""
Decorator for updating RoPE embeddings when using RoPE scaling strategies.
"""
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
# Only dynamic scaling needs to modify the positional encodings
if self.rope_type == "dynamic" and hasattr(self, "original_max_seq_len"):
if self.config.rope_scaling is None:
return func(self, *args, **kwargs)
# Extract max_position_embeddings from the actual model
current_ctx_len = kwargs.get("position_ids", None)
if current_ctx_len is not None:
# position_ids shape is [batch_size, seq_len]
current_ctx_len = current_ctx_len.shape[-1]
# If we're inside a context window we've seen before, we don't have to change anything
if current_ctx_len is not None and current_ctx_len <= self.max_seq_len_cached:
return func(self, *args, **kwargs)
current_ctx_len = self.config.max_position_embeddings if current_ctx_len is None else current_ctx_len
scaling_factor = self.config.rope_scaling["factor"]
self.max_seq_len_cached = min(
int(self.original_max_seq_len * scaling_factor),
self.config.rope_scaling.get("max_position_embeddings", float("inf"))
)
# Reset the cached maximum position embeddings to the new value
power = 0.0 if scaling_factor <= 1.0 else -0.5
self.inv_freq = self.original_inv_freq * (scaling_factor ** power)
return func(self, *args, **kwargs)
return wrapper
def get_default_rope_init(config, device=None):
"""
Default initialization for rotary position embeddings.
"""
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
inv_freq = 1.0 / (config.rope_theta ** (torch.arange(0, head_dim, 2).float().to(device) / head_dim))
return inv_freq, None
def get_linear_rope_init(config, device=None):
"""
Linear initialization for dynamic scaling rotary position embeddings.
"""
base = get_default_rope_init(config, device)[0]
scaling_factor = config.rope_scaling["factor"]
# Scale the base frequencies
return base / scaling_factor, scaling_factor
def get_dynamic_rope_init(config, device=None):
"""
Dynamic initialization for dynamic scaling rotary position embeddings (NTK approach).
"""
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
scaling_factor = config.rope_scaling["factor"]
# Adjust the base frequencies by a power of the scaling factor
power = 0.0 if scaling_factor <= 1.0 else -0.5
inv_freq = 1.0 / (config.rope_theta **
(torch.arange(0, head_dim, 2).float().to(device) / head_dim))
inv_freq = inv_freq * (scaling_factor ** power)
return inv_freq, scaling_factor
# Define the dictionary of RoPE initialization functions
ROPE_INIT_FUNCTIONS = {
"default": get_default_rope_init,
"linear": get_linear_rope_init,
"dynamic": get_dynamic_rope_init,
}
def can_return_tuple(inputs):
# Copied logic from the original source
return getattr(inputs, "return_tuple", False) if hasattr(inputs, "return_tuple") else False
# Start Modeling Code
logger = logging.get_logger(__name__)
# Core OLMo components (reused from original implementation)
class OlmoLayerNorm(nn.Module):
"""LayerNorm but with no learnable weight or bias."""
def __init__(self, hidden_size: int) -> None:
super().__init__()
self.normalized_shape = (hidden_size,)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to(
orig_dtype
)
class OlmoMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Helper functions for rotary position embeddings
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
Repeats key/value states for grouped queries attention.
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
"""Default eager implementation of multi-head attention"""
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class OlmoAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class OlmoDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx)
self.mlp = OlmoMLP(config)
self.input_layernorm = OlmoLayerNorm(config.hidden_size)
self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class OlmoRotaryEmbedding(nn.Module):
def __init__(self, config: OlmoConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Base model classes
class OlmoEPreTrainedModel(PreTrainedModel):
"""Base class for OlmoE models with additional extensibility features"""
config_class = OlmoConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OlmoDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class OlmoEModel(OlmoEPreTrainedModel):
"""Extended OLMo base model with additional customization points"""
def __init__(self, config: OlmoConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OlmoLayerNorm(config.hidden_size)
self.rotary_emb = OlmoRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# if self.config._attn_implementation == "flex_attention":
# if isinstance(attention_mask, torch.Tensor):
# attention_mask = make_flex_block_causal_mask(attention_mask)
# return attention_mask
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
sequence_length = input_tensor.shape[1]
if using_compilable_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""Creates a causal 4D mask."""
if attention_mask is not None and attention_mask.dim() == 4:
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class OlmoEForCausalLM(OlmoEPreTrainedModel, GenerationMixin):
"""OLMo Causal Language Model with extensions for custom training"""
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = OlmoEModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Get model outputs
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Example of custom model extensions you can create:
class OlmoEWithAdaptersMLP(OlmoMLP):
"""An extended MLP with adapters for parameter-efficient fine-tuning"""
def __init__(self, config):
super().__init__(config)
# Example adapter dimensions (typically much smaller than original dims)
adapter_size = getattr(config, "adapter_size", 64)
# Add adapter layers
self.down_adapter = nn.Sequential(
nn.Linear(self.hidden_size, adapter_size, bias=False),
nn.ReLU(),
nn.Linear(adapter_size, self.hidden_size, bias=False),
)
# Initialize adapter layers with small weights
self.down_adapter[0].weight.data.normal_(mean=0.0, std=0.01)
self.down_adapter[2].weight.data.normal_(mean=0.0, std=0.01)
def forward(self, x):
# Original MLP computation
mlp_output = super().forward(x)
# Add adapter path with residual connection
adapter_output = self.down_adapter(x)
return mlp_output + adapter_output
class OlmoEWithAdaptersDecoderLayer(OlmoDecoderLayer):
"""OLMo decoder layer with adapters for efficient fine-tuning"""
def __init__(self, config, layer_idx):
# Replace the standard MLP with an adapter-based MLP
super().__init__(config, layer_idx)
self.mlp = OlmoEWithAdaptersMLP(config)
class OlmoEWithAdaptersModel(OlmoEModel):
"""OLMo model with adapter layers"""
def __init__(self, config):
super().__init__(config)
# Replace all layers with adapter-based layers
self.layers = nn.ModuleList(
[OlmoEWithAdaptersDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
# Initialize weights
self.post_init()
class OlmoEWithAdaptersForCausalLM(OlmoEForCausalLM):
"""OLMo for causal language modeling with adapters"""
def __init__(self, config, adapters_config: Optional[Dict[str, Any]] = None):
super().__init__(config)
self.adapters_config = adapters_config
# Initialize the model with adapters using the config
self.model = OlmoEWithAdaptersModel(config)
# Initialize weights
self.post_init()
def freeze_base_model(self):
"""Freeze all parameters except adapters for efficient fine-tuning"""
for param in self.model.embed_tokens.parameters():
param.requires_grad = False
for layer in self.model.layers:
for name, param in layer.self_attn.named_parameters():
param.requires_grad = False
for name, param in layer.mlp.named_parameters():
if "down_adapter" not in name:
param.requires_grad = False
for param in layer.input_layernorm.parameters():
param.requires_grad = False
for param in layer.post_attention_layernorm.parameters():
param.requires_grad = False
for param in self.model.norm.parameters():
param.requires_grad = False
# Uncomment to freeze LM head
# for param in self.lm_head.parameters():
# param.requires_grad = False
def get_trainable_parameters(self):
"""Return only trainable parameters for optimizer"""
return [p for p in self.parameters() if p.requires_grad]
@classmethod
def from_config_and_adapters(
cls,
config,
adapters_config: Optional[Dict[str, Any]] = None,
) -> "OlmoEWithAdaptersForCausalLM":
"""Optional factory method, if you want to keep this pattern."""
return cls(config=config, adapters_config=adapters_config)