|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Callable, Dict, Optional, Tuple, Union, Any |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
|
from torch.utils.checkpoint import checkpoint |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import LossKwargs, is_torch_flex_attn_available, logging |
|
from transformers import OlmoConfig |
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
|
|
from functools import partial |
|
|
|
class GradientCheckpointingLayer(nn.Module): |
|
gradient_checkpointing = False |
|
def __call__(self, *args, **kwargs): |
|
|
|
if self.gradient_checkpointing and self.training: |
|
return checkpoint(self.forward, *args, **kwargs) |
|
return super().__call__(*args, **kwargs) |
|
|
|
def forward(self, *args, **kwargs): |
|
|
|
raise NotImplementedError("Subclasses must implement `forward`") |
|
|
|
import math |
|
import functools |
|
|
|
|
|
def dynamic_rope_update(func): |
|
""" |
|
Decorator for updating RoPE embeddings when using RoPE scaling strategies. |
|
""" |
|
@functools.wraps(func) |
|
def wrapper(self, *args, **kwargs): |
|
|
|
if self.rope_type == "dynamic" and hasattr(self, "original_max_seq_len"): |
|
if self.config.rope_scaling is None: |
|
return func(self, *args, **kwargs) |
|
|
|
current_ctx_len = kwargs.get("position_ids", None) |
|
if current_ctx_len is not None: |
|
|
|
current_ctx_len = current_ctx_len.shape[-1] |
|
|
|
|
|
if current_ctx_len is not None and current_ctx_len <= self.max_seq_len_cached: |
|
return func(self, *args, **kwargs) |
|
|
|
current_ctx_len = self.config.max_position_embeddings if current_ctx_len is None else current_ctx_len |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
|
|
self.max_seq_len_cached = min( |
|
int(self.original_max_seq_len * scaling_factor), |
|
self.config.rope_scaling.get("max_position_embeddings", float("inf")) |
|
) |
|
|
|
|
|
power = 0.0 if scaling_factor <= 1.0 else -0.5 |
|
self.inv_freq = self.original_inv_freq * (scaling_factor ** power) |
|
|
|
return func(self, *args, **kwargs) |
|
|
|
return wrapper |
|
|
|
def get_default_rope_init(config, device=None): |
|
""" |
|
Default initialization for rotary position embeddings. |
|
""" |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
inv_freq = 1.0 / (config.rope_theta ** (torch.arange(0, head_dim, 2).float().to(device) / head_dim)) |
|
return inv_freq, None |
|
|
|
def get_linear_rope_init(config, device=None): |
|
""" |
|
Linear initialization for dynamic scaling rotary position embeddings. |
|
""" |
|
base = get_default_rope_init(config, device)[0] |
|
scaling_factor = config.rope_scaling["factor"] |
|
|
|
|
|
return base / scaling_factor, scaling_factor |
|
|
|
def get_dynamic_rope_init(config, device=None): |
|
""" |
|
Dynamic initialization for dynamic scaling rotary position embeddings (NTK approach). |
|
""" |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
scaling_factor = config.rope_scaling["factor"] |
|
|
|
|
|
power = 0.0 if scaling_factor <= 1.0 else -0.5 |
|
inv_freq = 1.0 / (config.rope_theta ** |
|
(torch.arange(0, head_dim, 2).float().to(device) / head_dim)) |
|
inv_freq = inv_freq * (scaling_factor ** power) |
|
|
|
return inv_freq, scaling_factor |
|
|
|
|
|
ROPE_INIT_FUNCTIONS = { |
|
"default": get_default_rope_init, |
|
"linear": get_linear_rope_init, |
|
"dynamic": get_dynamic_rope_init, |
|
} |
|
|
|
def can_return_tuple(inputs): |
|
|
|
return getattr(inputs, "return_tuple", False) if hasattr(inputs, "return_tuple") else False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OlmoLayerNorm(nn.Module): |
|
"""LayerNorm but with no learnable weight or bias.""" |
|
|
|
def __init__(self, hidden_size: int) -> None: |
|
super().__init__() |
|
self.normalized_shape = (hidden_size,) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = hidden_states.dtype |
|
return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to( |
|
orig_dtype |
|
) |
|
|
|
|
|
class OlmoMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
Repeats key/value states for grouped queries attention. |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
"""Default eager implementation of multi-head attention""" |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class OlmoAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: OlmoConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
if self.config.clip_qkv is not None: |
|
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
query_states = query_states.view(hidden_shape).transpose(1, 2) |
|
key_states = key_states.view(hidden_shape).transpose(1, 2) |
|
value_states = value_states.view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
else: |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
|
|
class OlmoDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: OlmoConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx) |
|
|
|
self.mlp = OlmoMLP(config) |
|
self.input_layernorm = OlmoLayerNorm(config.hidden_size) |
|
self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class OlmoRotaryEmbedding(nn.Module): |
|
def __init__(self, config: OlmoConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
class OlmoEPreTrainedModel(PreTrainedModel): |
|
"""Base class for OlmoE models with additional extensibility features""" |
|
|
|
config_class = OlmoConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["OlmoDecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class OlmoEModel(OlmoEPreTrainedModel): |
|
"""Extended OLMo base model with additional customization points""" |
|
|
|
def __init__(self, config: OlmoConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = OlmoLayerNorm(config.hidden_size) |
|
self.rotary_emb = OlmoRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and (attention_mask == 0.0).any(): |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False |
|
|
|
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
sequence_length = input_tensor.shape[1] |
|
if using_compilable_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
and not output_attentions |
|
): |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
"""Creates a causal 4D mask.""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs, |
|
) -> BaseModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
class OlmoEForCausalLM(OlmoEPreTrainedModel, GenerationMixin): |
|
"""OLMo Causal Language Model with extensions for custom training""" |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = OlmoEModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs, |
|
) -> CausalLMOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
|
|
class OlmoEWithAdaptersMLP(OlmoMLP): |
|
"""An extended MLP with adapters for parameter-efficient fine-tuning""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
adapter_size = getattr(config, "adapter_size", 64) |
|
|
|
|
|
self.down_adapter = nn.Sequential( |
|
nn.Linear(self.hidden_size, adapter_size, bias=False), |
|
nn.ReLU(), |
|
nn.Linear(adapter_size, self.hidden_size, bias=False), |
|
) |
|
|
|
|
|
self.down_adapter[0].weight.data.normal_(mean=0.0, std=0.01) |
|
self.down_adapter[2].weight.data.normal_(mean=0.0, std=0.01) |
|
|
|
def forward(self, x): |
|
|
|
mlp_output = super().forward(x) |
|
|
|
|
|
adapter_output = self.down_adapter(x) |
|
return mlp_output + adapter_output |
|
|
|
|
|
class OlmoEWithAdaptersDecoderLayer(OlmoDecoderLayer): |
|
"""OLMo decoder layer with adapters for efficient fine-tuning""" |
|
|
|
def __init__(self, config, layer_idx): |
|
|
|
super().__init__(config, layer_idx) |
|
self.mlp = OlmoEWithAdaptersMLP(config) |
|
|
|
|
|
class OlmoEWithAdaptersModel(OlmoEModel): |
|
"""OLMo model with adapter layers""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.layers = nn.ModuleList( |
|
[OlmoEWithAdaptersDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
class OlmoEWithAdaptersForCausalLM(OlmoEForCausalLM): |
|
"""OLMo for causal language modeling with adapters""" |
|
|
|
def __init__(self, config, adapters_config: Optional[Dict[str, Any]] = None): |
|
super().__init__(config) |
|
self.adapters_config = adapters_config |
|
|
|
|
|
self.model = OlmoEWithAdaptersModel(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def freeze_base_model(self): |
|
"""Freeze all parameters except adapters for efficient fine-tuning""" |
|
for param in self.model.embed_tokens.parameters(): |
|
param.requires_grad = False |
|
|
|
for layer in self.model.layers: |
|
for name, param in layer.self_attn.named_parameters(): |
|
param.requires_grad = False |
|
|
|
for name, param in layer.mlp.named_parameters(): |
|
if "down_adapter" not in name: |
|
param.requires_grad = False |
|
|
|
for param in layer.input_layernorm.parameters(): |
|
param.requires_grad = False |
|
for param in layer.post_attention_layernorm.parameters(): |
|
param.requires_grad = False |
|
|
|
for param in self.model.norm.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
|
|
|
|
|
|
def get_trainable_parameters(self): |
|
"""Return only trainable parameters for optimizer""" |
|
return [p for p in self.parameters() if p.requires_grad] |
|
|
|
@classmethod |
|
def from_config_and_adapters( |
|
cls, |
|
config, |
|
adapters_config: Optional[Dict[str, Any]] = None, |
|
) -> "OlmoEWithAdaptersForCausalLM": |
|
"""Optional factory method, if you want to keep this pattern.""" |
|
return cls(config=config, adapters_config=adapters_config) |
|
|
|
|