|
|
|
""" |
|
Example usage script to evaluate a fine-tuned OlmoE adapter model |
|
and demonstrate generation with adapters. |
|
""" |
|
|
|
import argparse |
|
import torch |
|
from transformers import AutoTokenizer |
|
from modeling_olmoe import OlmoEWithAdaptersForCausalLM, OlmoConfig |
|
|
|
def generate_text( |
|
model_path: str, |
|
prompt: str, |
|
max_new_tokens: int = 128, |
|
temperature: float = 0.7, |
|
top_p: float = 0.9, |
|
device: str = "auto", |
|
): |
|
"""Generate text using a fine-tuned OlmoE adapter model.""" |
|
|
|
if device == "auto": |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {device}") |
|
|
|
|
|
print(f"Loading model from {model_path}") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
config = OlmoConfig.from_pretrained(model_path) |
|
|
|
|
|
model = OlmoEWithAdaptersForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32, |
|
) |
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
|
|
|
|
print("\nGenerating text...\n") |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(f"Prompt: {prompt}") |
|
print("\nGenerated text:") |
|
print("=" * 40) |
|
print(generated_text) |
|
print("=" * 40) |
|
|
|
return generated_text |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Generate text with OlmoE adapter model") |
|
parser.add_argument("--model_path", type=str, required=True, help="Path to the fine-tuned model") |
|
parser.add_argument("--prompt", type=str, default="This is an example of", help="Prompt for text generation") |
|
parser.add_argument("--max_new_tokens", type=int, default=128, help="Maximum number of new tokens to generate") |
|
parser.add_argument("--temperature", type=float, default=0.7, help="Sampling temperature") |
|
parser.add_argument("--top_p", type=float, default=0.9, help="Top-p sampling parameter") |
|
parser.add_argument("--device", type=str, default="auto", help="Device to use (cuda, cpu, or auto)") |
|
|
|
args = parser.parse_args() |
|
|
|
generate_text( |
|
model_path=args.model_path, |
|
prompt=args.prompt, |
|
max_new_tokens=args.max_new_tokens, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
device=args.device, |
|
) |
|
|
|
if __name__ == "__main__": |
|
main() |