Upload 8 files
Browse files- config.json +38 -15
- configuration_chatglm.py +8 -0
- generation_config.json +4 -4
- modeling_chatglm.py +311 -318
- tokenization_chatglm.py +131 -93
- tokenizer_config.json +3 -3
- visual.py +180 -0
config.json
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
{
|
2 |
"_name_or_path": "miniG",
|
3 |
-
"
|
|
|
|
|
|
|
4 |
"architectures": [
|
5 |
-
"
|
6 |
],
|
|
|
|
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
9 |
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
@@ -11,35 +16,53 @@
|
|
11 |
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
12 |
"AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
|
13 |
},
|
14 |
-
"add_bias_linear": false,
|
15 |
-
"add_qkv_bias": true,
|
16 |
-
"apply_query_key_layer_scaling": true,
|
17 |
-
"apply_residual_connection_post_layernorm": false,
|
18 |
-
"attention_dropout": 0.0,
|
19 |
-
"attention_softmax_in_fp32": true,
|
20 |
-
"attn_implementation": "sdpa",
|
21 |
"bias_dropout_fusion": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"ffn_hidden_size": 13696,
|
23 |
"fp32_residual_connection": false,
|
24 |
"hidden_dropout": 0.0,
|
25 |
"hidden_size": 4096,
|
26 |
"kv_channels": 128,
|
27 |
"layernorm_epsilon": 1.5625e-07,
|
|
|
28 |
"multi_query_attention": true,
|
29 |
"multi_query_group_num": 4,
|
30 |
"num_attention_heads": 32,
|
31 |
"num_hidden_layers": 40,
|
32 |
"num_layers": 40,
|
33 |
-
"rope_ratio": 10000,
|
34 |
"original_rope": true,
|
|
|
35 |
"padded_vocab_size": 151552,
|
36 |
"post_layer_norm": true,
|
|
|
|
|
37 |
"rmsnorm": true,
|
|
|
38 |
"seq_length": 1048576,
|
39 |
-
"use_cache": true,
|
40 |
-
"torch_dtype": "bfloat16",
|
41 |
-
"transformers_version": "4.44.0",
|
42 |
"tie_word_embeddings": false,
|
43 |
-
"
|
44 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
|
|
1 |
{
|
2 |
"_name_or_path": "miniG",
|
3 |
+
"add_bias_linear": false,
|
4 |
+
"add_qkv_bias": true,
|
5 |
+
"apply_query_key_layer_scaling": true,
|
6 |
+
"apply_residual_connection_post_layernorm": false,
|
7 |
"architectures": [
|
8 |
+
"ChatGLMForConditionalGeneration"
|
9 |
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_softmax_in_fp32": true,
|
12 |
"auto_map": {
|
13 |
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
14 |
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
|
|
16 |
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
17 |
"AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
|
18 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"bias_dropout_fusion": true,
|
20 |
+
"boi_token_id": 151339,
|
21 |
+
"classifier_dropout": null,
|
22 |
+
"eoi_token_id": 151340,
|
23 |
+
"eos_token_id": [
|
24 |
+
151329,
|
25 |
+
151336,
|
26 |
+
151338
|
27 |
+
],
|
28 |
"ffn_hidden_size": 13696,
|
29 |
"fp32_residual_connection": false,
|
30 |
"hidden_dropout": 0.0,
|
31 |
"hidden_size": 4096,
|
32 |
"kv_channels": 128,
|
33 |
"layernorm_epsilon": 1.5625e-07,
|
34 |
+
"model_type": "chatglm",
|
35 |
"multi_query_attention": true,
|
36 |
"multi_query_group_num": 4,
|
37 |
"num_attention_heads": 32,
|
38 |
"num_hidden_layers": 40,
|
39 |
"num_layers": 40,
|
|
|
40 |
"original_rope": true,
|
41 |
+
"pad_token_id": 151329,
|
42 |
"padded_vocab_size": 151552,
|
43 |
"post_layer_norm": true,
|
44 |
+
"pre_seq_len": null,
|
45 |
+
"prefix_projection": false,
|
46 |
"rmsnorm": true,
|
47 |
+
"rope_ratio": 10000,
|
48 |
"seq_length": 1048576,
|
|
|
|
|
|
|
49 |
"tie_word_embeddings": false,
|
50 |
+
"torch_dtype": "bfloat16",
|
51 |
+
"transformers_version": "4.43.1",
|
52 |
+
"use_cache": true,
|
53 |
+
"vision_config": {
|
54 |
+
"dropout_prob": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_size": 1792,
|
57 |
+
"image_size": 1120,
|
58 |
+
"in_channels": 3,
|
59 |
+
"intermediate_size": 15360,
|
60 |
+
"layer_norm_eps": 1e-06,
|
61 |
+
"num_heads": 16,
|
62 |
+
"num_hidden_layers": 63,
|
63 |
+
"num_positions": 6401,
|
64 |
+
"patch_size": 14,
|
65 |
+
"scaling_factor": 8
|
66 |
+
},
|
67 |
+
"vocab_size": 151552
|
68 |
}
|
configuration_chatglm.py
CHANGED
@@ -29,6 +29,10 @@ class ChatGLMConfig(PretrainedConfig):
|
|
29 |
apply_query_key_layer_scaling=True,
|
30 |
attention_softmax_in_fp32=True,
|
31 |
fp32_residual_connection=False,
|
|
|
|
|
|
|
|
|
32 |
**kwargs
|
33 |
):
|
34 |
self.num_layers = num_layers
|
@@ -55,4 +59,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
55 |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
56 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
57 |
self.fp32_residual_connection = fp32_residual_connection
|
|
|
|
|
|
|
|
|
58 |
super().__init__(**kwargs)
|
|
|
29 |
apply_query_key_layer_scaling=True,
|
30 |
attention_softmax_in_fp32=True,
|
31 |
fp32_residual_connection=False,
|
32 |
+
pre_seq_len=None,
|
33 |
+
prefix_projection=False,
|
34 |
+
boi_token_id=None,
|
35 |
+
eoi_token_id=None,
|
36 |
**kwargs
|
37 |
):
|
38 |
self.num_layers = num_layers
|
|
|
59 |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
60 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
61 |
self.fp32_residual_connection = fp32_residual_connection
|
62 |
+
self.pre_seq_len = pre_seq_len
|
63 |
+
self.prefix_projection = prefix_projection
|
64 |
+
self.boi_token_id = boi_token_id
|
65 |
+
self.eoi_token_id = eoi_token_id
|
66 |
super().__init__(**kwargs)
|
generation_config.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
|
|
2 |
"eos_token_id": [
|
3 |
151329,
|
4 |
151336,
|
5 |
151338
|
6 |
],
|
|
|
7 |
"pad_token_id": 151329,
|
8 |
-
"do_sample": true,
|
9 |
"temperature": 0.8,
|
10 |
-
"max_length": 1024000,
|
11 |
"top_p": 0.8,
|
12 |
-
"transformers_version": "4.
|
13 |
-
}
|
|
|
1 |
{
|
2 |
+
"do_sample": true,
|
3 |
"eos_token_id": [
|
4 |
151329,
|
5 |
151336,
|
6 |
151338
|
7 |
],
|
8 |
+
"max_length": 8192,
|
9 |
"pad_token_id": 151329,
|
|
|
10 |
"temperature": 0.8,
|
|
|
11 |
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.43.1"
|
13 |
+
}
|
modeling_chatglm.py
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
-
""" PyTorch
|
2 |
-
import json
|
3 |
import math
|
4 |
-
import copy
|
5 |
-
import warnings
|
6 |
-
import re
|
7 |
import sys
|
8 |
-
|
9 |
import torch
|
10 |
import torch.utils.checkpoint
|
11 |
import torch.nn.functional as F
|
12 |
from torch import nn
|
13 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
14 |
from torch.nn.utils import skip_init
|
15 |
-
from typing import Optional, Tuple, Union, List,
|
16 |
-
from copy import deepcopy
|
17 |
|
18 |
from transformers.modeling_outputs import (
|
19 |
BaseModelOutputWithPast,
|
@@ -25,6 +19,7 @@ from transformers.utils import logging, is_torch_npu_available
|
|
25 |
from transformers.generation.logits_process import LogitsProcessor
|
26 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
27 |
|
|
|
28 |
from .configuration_chatglm import ChatGLMConfig
|
29 |
|
30 |
try:
|
@@ -46,6 +41,9 @@ if sys.platform != 'darwin' and not is_torch_npu_available():
|
|
46 |
|
47 |
logger = logging.get_logger(__name__)
|
48 |
|
|
|
|
|
|
|
49 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
50 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
51 |
|
@@ -62,6 +60,38 @@ class InvalidScoreLogitsProcessor(LogitsProcessor):
|
|
62 |
return scores
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def split_tensor_along_last_dim(
|
66 |
tensor: torch.Tensor,
|
67 |
num_partitions: int,
|
@@ -99,6 +129,17 @@ class RotaryEmbedding(nn.Module):
|
|
99 |
self.original_impl = original_impl
|
100 |
self.rope_ratio = rope_ratio
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def forward_impl(
|
103 |
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
104 |
):
|
@@ -126,9 +167,12 @@ class RotaryEmbedding(nn.Module):
|
|
126 |
return cache
|
127 |
|
128 |
def forward(self, max_seq_len, offset=0):
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
|
134 |
@torch.jit.script
|
@@ -166,16 +210,16 @@ class RMSNorm(torch.nn.Module):
|
|
166 |
return (self.weight * hidden_states).to(input_dtype)
|
167 |
|
168 |
|
|
|
169 |
class CoreAttention(torch.nn.Module):
|
170 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
171 |
super(CoreAttention, self).__init__()
|
172 |
-
|
173 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
174 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
175 |
if self.apply_query_key_layer_scaling:
|
176 |
self.attention_softmax_in_fp32 = True
|
177 |
self.layer_number = max(1, layer_number)
|
178 |
-
self.is_causal = True
|
179 |
|
180 |
projection_size = config.kv_channels * config.num_attention_heads
|
181 |
|
@@ -194,76 +238,94 @@ class CoreAttention(torch.nn.Module):
|
|
194 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
195 |
|
196 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
matmul_input_buffer,
|
214 |
-
query_layer, # [b * np, sq, hn]
|
215 |
-
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
216 |
-
beta=0.0,
|
217 |
-
alpha=(1.0 / self.norm_factor),
|
218 |
-
)
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
# Attention probs and dropout
|
225 |
-
# ===========================
|
226 |
-
|
227 |
-
# attention scores and attention mask [b, np, sq, sk]
|
228 |
-
if self.attention_softmax_in_fp32:
|
229 |
-
attention_scores = attention_scores.float()
|
230 |
-
if self.coeff is not None:
|
231 |
-
attention_scores = attention_scores * self.coeff
|
232 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
233 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
234 |
-
device=attention_scores.device, dtype=torch.bool)
|
235 |
-
attention_mask.tril_()
|
236 |
-
attention_mask = ~attention_mask
|
237 |
-
if attention_mask is not None:
|
238 |
-
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
239 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
240 |
-
attention_probs = attention_probs.type_as(value_layer)
|
241 |
-
|
242 |
-
# This is actually dropping out entire tokens to attend to, which might
|
243 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
244 |
-
attention_probs = self.attention_dropout(attention_probs)
|
245 |
-
|
246 |
-
# query layer shape: [b * np, sq, hn]
|
247 |
-
# value layer shape: [b, np, sk, hn]
|
248 |
-
# attention shape: [b, np, sq, sk]
|
249 |
-
# context layer shape: [b, np, sq, hn]
|
250 |
-
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
251 |
-
# change view [b * np, sk, hn]
|
252 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
253 |
-
# change view [b * np, sq, sk]
|
254 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
255 |
-
# matmul: [b * np, sq, hn]
|
256 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
257 |
-
# change view [b, np, sq, hn]
|
258 |
-
context_layer = context_layer.view(*output_size)
|
259 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
260 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
261 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
262 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
263 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
|
|
267 |
|
268 |
class SdpaAttention(CoreAttention):
|
269 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
@@ -388,7 +450,6 @@ CORE_ATTENTION_CLASSES = {
|
|
388 |
"flash_attention_2": FlashAttention2
|
389 |
}
|
390 |
|
391 |
-
|
392 |
class SelfAttention(torch.nn.Module):
|
393 |
"""Parallel self-attention layer abstract class.
|
394 |
|
@@ -408,6 +469,7 @@ class SelfAttention(torch.nn.Module):
|
|
408 |
|
409 |
self.multi_query_attention = config.multi_query_attention
|
410 |
self.qkv_hidden_size = 3 * self.projection_size
|
|
|
411 |
if self.multi_query_attention:
|
412 |
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
413 |
self.qkv_hidden_size = (
|
@@ -418,7 +480,7 @@ class SelfAttention(torch.nn.Module):
|
|
418 |
device=device, **_config_to_kwargs(config)
|
419 |
)
|
420 |
|
421 |
-
self.core_attention =
|
422 |
|
423 |
# Output.
|
424 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
@@ -496,11 +558,7 @@ class SelfAttention(torch.nn.Module):
|
|
496 |
key_layer = torch.cat((cache_k, key_layer), dim=2)
|
497 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
498 |
if use_cache:
|
499 |
-
|
500 |
-
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
501 |
-
dim=1)
|
502 |
-
else:
|
503 |
-
kv_cache = (key_layer, value_layer)
|
504 |
else:
|
505 |
kv_cache = None
|
506 |
|
@@ -733,15 +791,7 @@ class GLMTransformer(torch.nn.Module):
|
|
733 |
)
|
734 |
hidden_states, kv_cache = layer_ret
|
735 |
if use_cache:
|
736 |
-
|
737 |
-
if kv_caches[0] is not None:
|
738 |
-
presents = presents + (kv_cache,)
|
739 |
-
# prefilling in decoding, use tensor format to save cuda memory
|
740 |
-
else:
|
741 |
-
if len(presents) == 0:
|
742 |
-
presents = kv_cache
|
743 |
-
else:
|
744 |
-
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
745 |
|
746 |
if output_hidden_states:
|
747 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
@@ -771,20 +821,16 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
771 |
"""Initialize the weights."""
|
772 |
return
|
773 |
|
774 |
-
def get_masks(self,
|
775 |
-
|
776 |
-
|
777 |
-
return padding_mask
|
778 |
-
return None
|
779 |
-
batch_size, seq_length = input_ids.shape
|
780 |
-
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
781 |
full_attention_mask.tril_()
|
782 |
past_length = 0
|
783 |
if past_key_values:
|
784 |
past_length = past_key_values[0][0].shape[2]
|
785 |
if past_length:
|
786 |
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
787 |
-
device=
|
788 |
if padding_mask is not None:
|
789 |
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
790 |
if not past_length and padding_mask is not None:
|
@@ -798,6 +844,9 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
798 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
799 |
return position_ids
|
800 |
|
|
|
|
|
|
|
801 |
|
802 |
class Embedding(torch.nn.Module):
|
803 |
"""Language model embeddings."""
|
@@ -825,6 +874,15 @@ class Embedding(torch.nn.Module):
|
|
825 |
return embeddings
|
826 |
|
827 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
828 |
class ChatGLMModel(ChatGLMPreTrainedModel):
|
829 |
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
830 |
super().__init__(config)
|
@@ -852,6 +910,16 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
852 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
853 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
854 |
dtype=config.torch_dtype, **init_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
855 |
|
856 |
def get_input_embeddings(self):
|
857 |
return self.embedding.word_embeddings
|
@@ -859,19 +927,70 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
859 |
def set_input_embeddings(self, value):
|
860 |
self.embedding.word_embeddings = value
|
861 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
862 |
def forward(
|
863 |
self,
|
864 |
-
input_ids,
|
|
|
865 |
position_ids: Optional[torch.Tensor] = None,
|
866 |
attention_mask: Optional[torch.BoolTensor] = None,
|
867 |
full_attention_mask: Optional[torch.BoolTensor] = None,
|
868 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
869 |
inputs_embeds: Optional[torch.Tensor] = None,
|
870 |
use_cache: Optional[bool] = None,
|
871 |
-
output_attentions: Optional[bool] = None,
|
872 |
output_hidden_states: Optional[bool] = None,
|
873 |
return_dict: Optional[bool] = None,
|
874 |
-
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
output_hidden_states = (
|
876 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
877 |
)
|
@@ -883,12 +1002,41 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
883 |
if inputs_embeds is None:
|
884 |
inputs_embeds = self.embedding(input_ids)
|
885 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
if full_attention_mask is None:
|
887 |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
888 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
889 |
|
890 |
# Rotary positional embeddings
|
891 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
|
|
892 |
if position_ids is not None:
|
893 |
rotary_pos_emb = rotary_pos_emb[position_ids]
|
894 |
else:
|
@@ -899,12 +1047,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
899 |
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
900 |
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
901 |
)
|
902 |
-
if presents is not None and type(presents) is torch.Tensor:
|
903 |
-
presents = presents.split(1, dim=0)
|
904 |
-
presents = list(presents)
|
905 |
-
presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
|
906 |
-
presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
|
907 |
-
presents = tuple(presents)
|
908 |
|
909 |
if not return_dict:
|
910 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
@@ -917,6 +1059,16 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
917 |
)
|
918 |
|
919 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
920 |
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
921 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
922 |
super().__init__(config)
|
@@ -930,9 +1082,12 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
930 |
outputs: ModelOutput,
|
931 |
model_kwargs: Dict[str, Any],
|
932 |
is_encoder_decoder: bool = False,
|
|
|
933 |
) -> Dict[str, Any]:
|
934 |
# update past_key_values
|
935 |
-
cache_name, cache = self._extract_past_from_model_output(
|
|
|
|
|
936 |
model_kwargs[cache_name] = cache
|
937 |
|
938 |
# update attention mask
|
@@ -957,6 +1112,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
957 |
def prepare_inputs_for_generation(
|
958 |
self,
|
959 |
input_ids: torch.LongTensor,
|
|
|
960 |
past_key_values: Optional[torch.Tensor] = None,
|
961 |
attention_mask: Optional[torch.Tensor] = None,
|
962 |
position_ids: Optional[torch.Tensor] = None,
|
@@ -967,12 +1123,34 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
967 |
# only last token for input_ids if past is not None
|
968 |
if position_ids is None:
|
969 |
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
970 |
if not is_first_forward:
|
971 |
if past_key_values is not None:
|
972 |
position_ids = position_ids[..., -1:]
|
973 |
input_ids = input_ids[:, -1:]
|
974 |
return {
|
975 |
"input_ids": input_ids,
|
|
|
976 |
"past_key_values": past_key_values,
|
977 |
"position_ids": position_ids,
|
978 |
"attention_mask": attention_mask,
|
@@ -983,6 +1161,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
983 |
def forward(
|
984 |
self,
|
985 |
input_ids: Optional[torch.Tensor] = None,
|
|
|
986 |
position_ids: Optional[torch.Tensor] = None,
|
987 |
attention_mask: Optional[torch.Tensor] = None,
|
988 |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
@@ -999,6 +1178,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
999 |
|
1000 |
transformer_outputs = self.transformer(
|
1001 |
input_ids=input_ids,
|
|
|
1002 |
position_ids=position_ids,
|
1003 |
attention_mask=attention_mask,
|
1004 |
past_key_values=past_key_values,
|
@@ -1015,12 +1195,23 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1015 |
|
1016 |
loss = None
|
1017 |
if labels is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
lm_logits = lm_logits.to(torch.float32)
|
1019 |
-
|
1020 |
-
# Shift so that tokens < n predict n
|
1021 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1022 |
shift_labels = labels[..., 1:].contiguous()
|
1023 |
-
# Flatten the tokens
|
1024 |
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1025 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1026 |
|
@@ -1058,202 +1249,6 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1058 |
for layer_past in past
|
1059 |
)
|
1060 |
|
1061 |
-
def process_response(self, output, history):
|
1062 |
-
content = ""
|
1063 |
-
history = deepcopy(history)
|
1064 |
-
for response in output.split("<|assistant|>"):
|
1065 |
-
if "\n" in response:
|
1066 |
-
metadata, content = response.split("\n", maxsplit=1)
|
1067 |
-
else:
|
1068 |
-
metadata, content = "", response
|
1069 |
-
if not metadata.strip():
|
1070 |
-
content = content.strip()
|
1071 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
1072 |
-
content = content.replace("[[训练时间]]", "2023年")
|
1073 |
-
else:
|
1074 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
1075 |
-
if history[0]["role"] == "system" and "tools" in history[0]:
|
1076 |
-
parameters = json.loads(content)
|
1077 |
-
content = {"name": metadata.strip(), "parameters": parameters}
|
1078 |
-
else:
|
1079 |
-
content = {"name": metadata.strip(), "content": content}
|
1080 |
-
return content, history
|
1081 |
-
|
1082 |
-
@torch.inference_mode()
|
1083 |
-
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
1084 |
-
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
1085 |
-
**kwargs):
|
1086 |
-
if history is None:
|
1087 |
-
history = []
|
1088 |
-
if logits_processor is None:
|
1089 |
-
logits_processor = LogitsProcessorList()
|
1090 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1091 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1092 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1093 |
-
history.append({"role": role, "content": query})
|
1094 |
-
inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
|
1095 |
-
return_tensors="pt", return_dict=True)
|
1096 |
-
inputs = inputs.to(self.device)
|
1097 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
1098 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
1099 |
-
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
1100 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1101 |
-
response = tokenizer.decode(outputs)
|
1102 |
-
response, history = self.process_response(response, history)
|
1103 |
-
return response, history
|
1104 |
-
|
1105 |
-
@torch.inference_mode()
|
1106 |
-
def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
1107 |
-
past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
|
1108 |
-
logits_processor=None, return_past_key_values=False, **kwargs):
|
1109 |
-
if history is None:
|
1110 |
-
history = []
|
1111 |
-
if logits_processor is None:
|
1112 |
-
logits_processor = LogitsProcessorList()
|
1113 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1114 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
1115 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
1116 |
-
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1117 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1118 |
-
if past_key_values is None:
|
1119 |
-
inputs = tokenizer.apply_chat_template(history + [{"role": role, "content": query}],
|
1120 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
1121 |
-
return_dict=True)
|
1122 |
-
else:
|
1123 |
-
inputs = tokenizer.apply_chat_template([{"role": role, "content": query}], add_special_tokens=False,
|
1124 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
1125 |
-
return_dict=True)
|
1126 |
-
inputs = inputs.to(self.device)
|
1127 |
-
if past_key_values is not None:
|
1128 |
-
past_length = past_key_values[0][0].shape[2]
|
1129 |
-
inputs.position_ids += past_length
|
1130 |
-
attention_mask = inputs.attention_mask
|
1131 |
-
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1132 |
-
inputs['attention_mask'] = attention_mask
|
1133 |
-
history.append({"role": role, "content": query})
|
1134 |
-
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1135 |
-
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
|
1136 |
-
**gen_kwargs):
|
1137 |
-
if return_past_key_values:
|
1138 |
-
outputs, past_key_values = outputs
|
1139 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1140 |
-
response = tokenizer.decode(outputs)
|
1141 |
-
if response and response[-1] != "�":
|
1142 |
-
response, new_history = self.process_response(response, history)
|
1143 |
-
if return_past_key_values:
|
1144 |
-
yield response, new_history, past_key_values
|
1145 |
-
else:
|
1146 |
-
yield response, new_history
|
1147 |
-
|
1148 |
-
@torch.inference_mode()
|
1149 |
-
def stream_generate(
|
1150 |
-
self,
|
1151 |
-
input_ids,
|
1152 |
-
generation_config: Optional[GenerationConfig] = None,
|
1153 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
1154 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1155 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1156 |
-
return_past_key_values=False,
|
1157 |
-
**kwargs,
|
1158 |
-
):
|
1159 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1160 |
-
|
1161 |
-
if generation_config is None:
|
1162 |
-
generation_config = self.generation_config
|
1163 |
-
generation_config = copy.deepcopy(generation_config)
|
1164 |
-
model_kwargs = generation_config.update(**kwargs)
|
1165 |
-
model_kwargs["use_cache"] = generation_config.use_cache
|
1166 |
-
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1167 |
-
|
1168 |
-
if isinstance(eos_token_id, int):
|
1169 |
-
eos_token_id = [eos_token_id]
|
1170 |
-
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
1171 |
-
|
1172 |
-
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1173 |
-
if has_default_max_length and generation_config.max_new_tokens is None:
|
1174 |
-
warnings.warn(
|
1175 |
-
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1176 |
-
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1177 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1178 |
-
UserWarning,
|
1179 |
-
)
|
1180 |
-
elif generation_config.max_new_tokens is not None:
|
1181 |
-
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1182 |
-
if not has_default_max_length:
|
1183 |
-
logger.warn(
|
1184 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1185 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1186 |
-
"Please refer to the documentation for more information. "
|
1187 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1188 |
-
UserWarning,
|
1189 |
-
)
|
1190 |
-
|
1191 |
-
if input_ids_seq_length >= generation_config.max_length:
|
1192 |
-
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1193 |
-
logger.warning(
|
1194 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1195 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1196 |
-
" increasing `max_new_tokens`."
|
1197 |
-
)
|
1198 |
-
|
1199 |
-
# 2. Set generation parameters if not already defined
|
1200 |
-
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1201 |
-
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1202 |
-
|
1203 |
-
logits_processor = self._get_logits_processor(
|
1204 |
-
generation_config=generation_config,
|
1205 |
-
input_ids_seq_length=input_ids_seq_length,
|
1206 |
-
encoder_input_ids=input_ids,
|
1207 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1208 |
-
logits_processor=logits_processor,
|
1209 |
-
)
|
1210 |
-
|
1211 |
-
stopping_criteria = self._get_stopping_criteria(
|
1212 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1213 |
-
)
|
1214 |
-
logits_warper = self._get_logits_warper(generation_config)
|
1215 |
-
|
1216 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1217 |
-
scores = None
|
1218 |
-
while True:
|
1219 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1220 |
-
# forward pass to get next token
|
1221 |
-
outputs = self(
|
1222 |
-
**model_inputs,
|
1223 |
-
return_dict=True,
|
1224 |
-
output_attentions=False,
|
1225 |
-
output_hidden_states=False,
|
1226 |
-
)
|
1227 |
-
|
1228 |
-
next_token_logits = outputs.logits[:, -1, :]
|
1229 |
-
|
1230 |
-
# pre-process distribution
|
1231 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1232 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1233 |
-
|
1234 |
-
# sample
|
1235 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1236 |
-
if generation_config.do_sample:
|
1237 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1238 |
-
else:
|
1239 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
1240 |
-
# update generated ids, model inputs, and length for next step
|
1241 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1242 |
-
model_kwargs = self._update_model_kwargs_for_generation(
|
1243 |
-
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1244 |
-
)
|
1245 |
-
unfinished_sequences = unfinished_sequences.mul(
|
1246 |
-
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
1247 |
-
)
|
1248 |
-
if return_past_key_values:
|
1249 |
-
yield input_ids, outputs.past_key_values
|
1250 |
-
else:
|
1251 |
-
yield input_ids
|
1252 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
1253 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1254 |
-
break
|
1255 |
-
|
1256 |
-
|
1257 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1258 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
1259 |
super().__init__(config)
|
@@ -1261,7 +1256,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1261 |
self.num_labels = config.num_labels
|
1262 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1263 |
|
1264 |
-
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=
|
1265 |
if config.classifier_dropout is not None:
|
1266 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1267 |
else:
|
@@ -1278,7 +1273,6 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1278 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1279 |
labels: Optional[torch.LongTensor] = None,
|
1280 |
use_cache: Optional[bool] = None,
|
1281 |
-
output_attentions: Optional[bool] = None,
|
1282 |
output_hidden_states: Optional[bool] = None,
|
1283 |
return_dict: Optional[bool] = None,
|
1284 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
@@ -1292,13 +1286,12 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1292 |
past_key_values=past_key_values,
|
1293 |
inputs_embeds=inputs_embeds,
|
1294 |
use_cache=use_cache,
|
1295 |
-
output_attentions=output_attentions,
|
1296 |
output_hidden_states=output_hidden_states,
|
1297 |
return_dict=return_dict,
|
1298 |
)
|
1299 |
|
1300 |
hidden_states = transformer_outputs[0]
|
1301 |
-
pooled_hidden_states = hidden_states[
|
1302 |
if self.dropout is not None:
|
1303 |
pooled_hidden_states = self.dropout(pooled_hidden_states)
|
1304 |
logits = self.classifier_head(pooled_hidden_states)
|
@@ -1336,4 +1329,4 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1336 |
past_key_values=transformer_outputs.past_key_values,
|
1337 |
hidden_states=transformer_outputs.hidden_states,
|
1338 |
attentions=transformer_outputs.attentions,
|
1339 |
-
)
|
|
|
1 |
+
""" PyTorch GLM-4V model. """
|
|
|
2 |
import math
|
|
|
|
|
|
|
3 |
import sys
|
|
|
4 |
import torch
|
5 |
import torch.utils.checkpoint
|
6 |
import torch.nn.functional as F
|
7 |
from torch import nn
|
8 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
9 |
from torch.nn.utils import skip_init
|
10 |
+
from typing import Optional, Tuple, Union, List, Dict, Any
|
|
|
11 |
|
12 |
from transformers.modeling_outputs import (
|
13 |
BaseModelOutputWithPast,
|
|
|
19 |
from transformers.generation.logits_process import LogitsProcessor
|
20 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
21 |
|
22 |
+
from .visual import EVA2CLIPModel
|
23 |
from .configuration_chatglm import ChatGLMConfig
|
24 |
|
25 |
try:
|
|
|
41 |
|
42 |
logger = logging.get_logger(__name__)
|
43 |
|
44 |
+
LANGUAGE_TOKEN_TYPE = 0
|
45 |
+
VISION_TOKEN_TYPE = 1
|
46 |
+
|
47 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
48 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
49 |
|
|
|
60 |
return scores
|
61 |
|
62 |
|
63 |
+
class PrefixEncoder(torch.nn.Module):
|
64 |
+
"""
|
65 |
+
The torch.nn model to encode the prefix
|
66 |
+
Input shape: (batch-size, prefix-length)
|
67 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, config: ChatGLMConfig):
|
71 |
+
super().__init__()
|
72 |
+
self.prefix_projection = config.prefix_projection
|
73 |
+
if self.prefix_projection:
|
74 |
+
# Use a two-layer MLP to encode the prefix
|
75 |
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
76 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
77 |
+
self.trans = torch.nn.Sequential(
|
78 |
+
torch.nn.Linear(kv_size, config.hidden_size),
|
79 |
+
torch.nn.Tanh(),
|
80 |
+
torch.nn.Linear(config.hidden_size, kv_size)
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len,
|
84 |
+
config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
|
85 |
+
|
86 |
+
def forward(self, prefix: torch.Tensor):
|
87 |
+
if self.prefix_projection:
|
88 |
+
prefix_tokens = self.embedding(prefix)
|
89 |
+
past_key_values = self.trans(prefix_tokens)
|
90 |
+
else:
|
91 |
+
past_key_values = self.embedding(prefix)
|
92 |
+
return past_key_values
|
93 |
+
|
94 |
+
|
95 |
def split_tensor_along_last_dim(
|
96 |
tensor: torch.Tensor,
|
97 |
num_partitions: int,
|
|
|
129 |
self.original_impl = original_impl
|
130 |
self.rope_ratio = rope_ratio
|
131 |
|
132 |
+
def impl(self, seq_length: int, dim: int, device: torch.device, dtype: torch.dtype):
|
133 |
+
base = 10000 * self.rope_ratio
|
134 |
+
inv_freq = 1.0 / (
|
135 |
+
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
136 |
+
seq = torch.arange(seq_length, device=inv_freq.device, dtype=torch.float32)
|
137 |
+
freqs = torch.outer(seq, inv_freq)
|
138 |
+
# first part even vector components, second part odd vector components,
|
139 |
+
# 2 * dim in dimension size
|
140 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
141 |
+
return emb
|
142 |
+
|
143 |
def forward_impl(
|
144 |
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
145 |
):
|
|
|
167 |
return cache
|
168 |
|
169 |
def forward(self, max_seq_len, offset=0):
|
170 |
+
if self.original_impl:
|
171 |
+
return self.forward_impl(
|
172 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
return self.impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device)
|
176 |
|
177 |
|
178 |
@torch.jit.script
|
|
|
210 |
return (self.weight * hidden_states).to(input_dtype)
|
211 |
|
212 |
|
213 |
+
|
214 |
class CoreAttention(torch.nn.Module):
|
215 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
216 |
super(CoreAttention, self).__init__()
|
217 |
+
|
218 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
219 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
220 |
if self.apply_query_key_layer_scaling:
|
221 |
self.attention_softmax_in_fp32 = True
|
222 |
self.layer_number = max(1, layer_number)
|
|
|
223 |
|
224 |
projection_size = config.kv_channels * config.num_attention_heads
|
225 |
|
|
|
238 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
239 |
|
240 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
241 |
+
pytorch_major_version = int(torch.__version__.split('.')[0])
|
242 |
+
if pytorch_major_version >= 2:
|
243 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
244 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
245 |
+
is_causal=True)
|
246 |
+
else:
|
247 |
+
if attention_mask is not None:
|
248 |
+
attention_mask = ~attention_mask
|
249 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
250 |
+
attention_mask)
|
251 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
252 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
253 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
254 |
+
else:
|
255 |
+
# Raw attention scores
|
256 |
|
257 |
+
# [b, np, sq, sk]
|
258 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
261 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
262 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
263 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
# preallocting input tensor: [b * np, sq, sk]
|
266 |
+
matmul_input_buffer = torch.empty(
|
267 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
268 |
+
device=query_layer.device
|
269 |
+
)
|
270 |
+
|
271 |
+
# Raw attention scores. [b * np, sq, sk]
|
272 |
+
matmul_result = torch.baddbmm(
|
273 |
+
matmul_input_buffer,
|
274 |
+
query_layer, # [b * np, sq, hn]
|
275 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
276 |
+
beta=0.0,
|
277 |
+
alpha=(1.0 / self.norm_factor),
|
278 |
+
)
|
279 |
+
|
280 |
+
# change view to [b, np, sq, sk]
|
281 |
+
attention_scores = matmul_result.view(*output_size)
|
282 |
+
|
283 |
+
# ===========================
|
284 |
+
# Attention probs and dropout
|
285 |
+
# ===========================
|
286 |
+
|
287 |
+
# attention scores and attention mask [b, np, sq, sk]
|
288 |
+
if self.attention_softmax_in_fp32:
|
289 |
+
attention_scores = attention_scores.float()
|
290 |
+
if self.coeff is not None:
|
291 |
+
attention_scores = attention_scores * self.coeff
|
292 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
293 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
294 |
+
device=attention_scores.device, dtype=torch.bool)
|
295 |
+
attention_mask.tril_()
|
296 |
+
attention_mask = ~attention_mask
|
297 |
+
if attention_mask is not None:
|
298 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
299 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
300 |
+
attention_probs = attention_probs.type_as(value_layer)
|
301 |
+
|
302 |
+
# This is actually dropping out entire tokens to attend to, which might
|
303 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
304 |
+
attention_probs = self.attention_dropout(attention_probs)
|
305 |
+
# =========================
|
306 |
+
# Context layer. [sq, b, hp]
|
307 |
+
# =========================
|
308 |
+
|
309 |
+
# value_layer -> context layer.
|
310 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
311 |
+
|
312 |
+
# context layer shape: [b, np, sq, hn]
|
313 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
314 |
+
# change view [b * np, sk, hn]
|
315 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
316 |
+
# change view [b * np, sq, sk]
|
317 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
318 |
+
# matmul: [b * np, sq, hn]
|
319 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
320 |
+
# change view [b, np, sq, hn]
|
321 |
+
context_layer = context_layer.view(*output_size)
|
322 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
323 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
324 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
325 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
326 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
327 |
|
328 |
+
return context_layer
|
329 |
|
330 |
class SdpaAttention(CoreAttention):
|
331 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
|
|
450 |
"flash_attention_2": FlashAttention2
|
451 |
}
|
452 |
|
|
|
453 |
class SelfAttention(torch.nn.Module):
|
454 |
"""Parallel self-attention layer abstract class.
|
455 |
|
|
|
469 |
|
470 |
self.multi_query_attention = config.multi_query_attention
|
471 |
self.qkv_hidden_size = 3 * self.projection_size
|
472 |
+
self.original_rope = config.original_rope
|
473 |
if self.multi_query_attention:
|
474 |
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
475 |
self.qkv_hidden_size = (
|
|
|
480 |
device=device, **_config_to_kwargs(config)
|
481 |
)
|
482 |
|
483 |
+
self.core_attention = CoreAttention(config, self.layer_number)
|
484 |
|
485 |
# Output.
|
486 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
|
|
558 |
key_layer = torch.cat((cache_k, key_layer), dim=2)
|
559 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
560 |
if use_cache:
|
561 |
+
kv_cache = (key_layer, value_layer)
|
|
|
|
|
|
|
|
|
562 |
else:
|
563 |
kv_cache = None
|
564 |
|
|
|
791 |
)
|
792 |
hidden_states, kv_cache = layer_ret
|
793 |
if use_cache:
|
794 |
+
presents = presents + (kv_cache,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
|
796 |
if output_hidden_states:
|
797 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
821 |
"""Initialize the weights."""
|
822 |
return
|
823 |
|
824 |
+
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
|
825 |
+
batch_size, seq_length, embed_size = input_embeds.shape
|
826 |
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_embeds.device)
|
|
|
|
|
|
|
|
|
827 |
full_attention_mask.tril_()
|
828 |
past_length = 0
|
829 |
if past_key_values:
|
830 |
past_length = past_key_values[0][0].shape[2]
|
831 |
if past_length:
|
832 |
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
833 |
+
device=input_embeds.device), full_attention_mask), dim=-1)
|
834 |
if padding_mask is not None:
|
835 |
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
836 |
if not past_length and padding_mask is not None:
|
|
|
844 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
845 |
return position_ids
|
846 |
|
847 |
+
def get_multimodal_position_ids(self, input_ids, device):
|
848 |
+
batch_size, seq_length = input_ids.shape
|
849 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
850 |
|
851 |
class Embedding(torch.nn.Module):
|
852 |
"""Language model embeddings."""
|
|
|
874 |
return embeddings
|
875 |
|
876 |
|
877 |
+
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
878 |
+
if images_list is None or len(images_list) == 0:
|
879 |
+
return True
|
880 |
+
for image_list in images_list:
|
881 |
+
if image_list is not None:
|
882 |
+
return False
|
883 |
+
return True
|
884 |
+
|
885 |
+
|
886 |
class ChatGLMModel(ChatGLMPreTrainedModel):
|
887 |
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
888 |
super().__init__(config)
|
|
|
910 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
911 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
912 |
dtype=config.torch_dtype, **init_kwargs)
|
913 |
+
self.pre_seq_len = config.pre_seq_len
|
914 |
+
self.prefix_projection = config.prefix_projection
|
915 |
+
if self.pre_seq_len is not None:
|
916 |
+
for param in self.parameters():
|
917 |
+
param.requires_grad = False
|
918 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
919 |
+
self.prefix_encoder = PrefixEncoder(config)
|
920 |
+
self.dropout = torch.nn.Dropout(0.1)
|
921 |
+
|
922 |
+
self.vision = EVA2CLIPModel(config)
|
923 |
|
924 |
def get_input_embeddings(self):
|
925 |
return self.embedding.word_embeddings
|
|
|
927 |
def set_input_embeddings(self, value):
|
928 |
self.embedding.word_embeddings = value
|
929 |
|
930 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
931 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
932 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
933 |
+
past_key_values = past_key_values.view(
|
934 |
+
batch_size,
|
935 |
+
self.pre_seq_len,
|
936 |
+
self.pre_seq_len,
|
937 |
+
self.num_layers * 2,
|
938 |
+
self.multi_query_group_num,
|
939 |
+
self.kv_channels
|
940 |
+
)
|
941 |
+
# seq_len, b, nh, hidden_size
|
942 |
+
past_key_values = self.dropout(past_key_values)
|
943 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
944 |
+
return past_key_values
|
945 |
+
|
946 |
def forward(
|
947 |
self,
|
948 |
+
input_ids: torch.LongTensor = None,
|
949 |
+
images: torch.Tensor = None,
|
950 |
position_ids: Optional[torch.Tensor] = None,
|
951 |
attention_mask: Optional[torch.BoolTensor] = None,
|
952 |
full_attention_mask: Optional[torch.BoolTensor] = None,
|
953 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
954 |
inputs_embeds: Optional[torch.Tensor] = None,
|
955 |
use_cache: Optional[bool] = None,
|
|
|
956 |
output_hidden_states: Optional[bool] = None,
|
957 |
return_dict: Optional[bool] = None,
|
958 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
959 |
+
"""take care of image_encode, position_ids and (attention_mask = None is fine)"""
|
960 |
+
|
961 |
+
# generate mode with past_key_values. the image features are already mapped
|
962 |
+
if past_key_values is None:
|
963 |
+
# not allow for inputs_embeds, because we want to process image feature
|
964 |
+
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
965 |
+
if not is_empty(images): # multi-modality
|
966 |
+
image_size: int = self.config.vision_config['image_size']
|
967 |
+
patch_size: int = self.config.vision_config['patch_size']
|
968 |
+
num_patches = (image_size // patch_size // 2) ** 2
|
969 |
+
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
970 |
+
inputs_embeds = self.embedding(input_ids)
|
971 |
+
|
972 |
+
images = images.to(dtype=inputs_embeds.dtype)
|
973 |
+
images_features = self.vision(images)
|
974 |
+
|
975 |
+
if position_ids is None:
|
976 |
+
position_ids = self.get_position_ids(input_ids, device=inputs_embeds.device)
|
977 |
+
new_input_embeds, new_position_ids = [], []
|
978 |
+
|
979 |
+
for i in range(len(input_ids)):
|
980 |
+
input_id = input_ids[i].tolist()
|
981 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
|
982 |
+
self.config.eoi_token_id)
|
983 |
+
assert eoi_token_pos - boi_token_pos == 2
|
984 |
+
new_input_embeds.append(torch.cat(
|
985 |
+
(inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device),
|
986 |
+
inputs_embeds[i, eoi_token_pos + 1:])))
|
987 |
+
new_position_ids.append(torch.cat(
|
988 |
+
(position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
|
989 |
+
position_ids[i, eoi_token_pos:])
|
990 |
+
))
|
991 |
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
992 |
+
position_ids = torch.stack(new_position_ids, dim=0)
|
993 |
+
|
994 |
output_hidden_states = (
|
995 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
996 |
)
|
|
|
1002 |
if inputs_embeds is None:
|
1003 |
inputs_embeds = self.embedding(input_ids)
|
1004 |
|
1005 |
+
if self.pre_seq_len is not None:
|
1006 |
+
if past_key_values is None:
|
1007 |
+
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
1008 |
+
dtype=inputs_embeds.dtype)
|
1009 |
+
if attention_mask is not None:
|
1010 |
+
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
1011 |
+
attention_mask], dim=-1)
|
1012 |
+
|
1013 |
if full_attention_mask is None:
|
1014 |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
1015 |
+
if self.training:
|
1016 |
+
# https://github.com/THUDM/GLM-4/issues/264
|
1017 |
+
new_input_ids, new_attention_mask = [], []
|
1018 |
+
for i in range(len(input_ids)):
|
1019 |
+
input_id = input_ids[i].tolist()
|
1020 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id)
|
1021 |
+
assert eoi_token_pos - boi_token_pos == 2
|
1022 |
+
|
1023 |
+
new_attention_mask.append(torch.cat(
|
1024 |
+
(attention_mask[i, :boi_token_pos + 1], torch.ones(num_patches).to(attention_mask.device),
|
1025 |
+
attention_mask[i, eoi_token_pos:])))
|
1026 |
+
|
1027 |
+
new_input_ids.append(torch.cat(
|
1028 |
+
(input_ids[i, :boi_token_pos + 1], input_ids[i, -1].repeat(num_patches),
|
1029 |
+
input_ids[i, eoi_token_pos:])))
|
1030 |
+
|
1031 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
1032 |
+
input_ids = torch.stack(new_input_ids, dim=0)
|
1033 |
+
inputs_embeds = self.embedding(input_ids)
|
1034 |
+
|
1035 |
+
full_attention_mask = self.get_masks(inputs_embeds, past_key_values, padding_mask=attention_mask)
|
1036 |
|
1037 |
# Rotary positional embeddings
|
1038 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
1039 |
+
|
1040 |
if position_ids is not None:
|
1041 |
rotary_pos_emb = rotary_pos_emb[position_ids]
|
1042 |
else:
|
|
|
1047 |
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
1048 |
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
1049 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
1050 |
|
1051 |
if not return_dict:
|
1052 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
|
|
1059 |
)
|
1060 |
|
1061 |
|
1062 |
+
def _history_to_prompt(history, query):
|
1063 |
+
prompt = ''
|
1064 |
+
flag = False
|
1065 |
+
for i, (old_query, response) in enumerate(history):
|
1066 |
+
prompt += ('<|user|>' if flag else '') + old_query + "<|assistant|>" + response + "<|endoftext|>"
|
1067 |
+
flag = True
|
1068 |
+
prompt += '{}{}<|assistant|>'.format('<|user|>' if flag else '', query)
|
1069 |
+
return prompt
|
1070 |
+
|
1071 |
+
|
1072 |
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
1073 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
1074 |
super().__init__(config)
|
|
|
1082 |
outputs: ModelOutput,
|
1083 |
model_kwargs: Dict[str, Any],
|
1084 |
is_encoder_decoder: bool = False,
|
1085 |
+
standardize_cache_format: bool = False,
|
1086 |
) -> Dict[str, Any]:
|
1087 |
# update past_key_values
|
1088 |
+
cache_name, cache = self._extract_past_from_model_output(
|
1089 |
+
outputs, standardize_cache_format=standardize_cache_format
|
1090 |
+
)
|
1091 |
model_kwargs[cache_name] = cache
|
1092 |
|
1093 |
# update attention mask
|
|
|
1112 |
def prepare_inputs_for_generation(
|
1113 |
self,
|
1114 |
input_ids: torch.LongTensor,
|
1115 |
+
images: Optional[torch.Tensor] = None,
|
1116 |
past_key_values: Optional[torch.Tensor] = None,
|
1117 |
attention_mask: Optional[torch.Tensor] = None,
|
1118 |
position_ids: Optional[torch.Tensor] = None,
|
|
|
1123 |
# only last token for input_ids if past is not None
|
1124 |
if position_ids is None:
|
1125 |
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
1126 |
+
if attention_mask is not None:
|
1127 |
+
image_size: int = self.config.vision_config['image_size']
|
1128 |
+
patch_size: int = self.config.vision_config['patch_size']
|
1129 |
+
num_patches = (image_size // patch_size // 2) ** 2
|
1130 |
+
new_attention_masks = []
|
1131 |
+
|
1132 |
+
# if not image, use this default id
|
1133 |
+
eoi_token_pos = 6
|
1134 |
+
boi_token_pos = 4
|
1135 |
+
|
1136 |
+
for i in range(len(input_ids)):
|
1137 |
+
input_id = input_ids[i].tolist()
|
1138 |
+
if not is_empty(images):
|
1139 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
|
1140 |
+
self.config.eoi_token_id)
|
1141 |
+
assert eoi_token_pos - boi_token_pos == 2
|
1142 |
+
new_attention_masks.append(torch.cat(
|
1143 |
+
(attention_mask[i, :boi_token_pos + 1], attention_mask.new_ones(num_patches),
|
1144 |
+
attention_mask[i, eoi_token_pos:])
|
1145 |
+
))
|
1146 |
+
attention_mask = torch.stack(new_attention_masks, dim=0)
|
1147 |
if not is_first_forward:
|
1148 |
if past_key_values is not None:
|
1149 |
position_ids = position_ids[..., -1:]
|
1150 |
input_ids = input_ids[:, -1:]
|
1151 |
return {
|
1152 |
"input_ids": input_ids,
|
1153 |
+
"images": images,
|
1154 |
"past_key_values": past_key_values,
|
1155 |
"position_ids": position_ids,
|
1156 |
"attention_mask": attention_mask,
|
|
|
1161 |
def forward(
|
1162 |
self,
|
1163 |
input_ids: Optional[torch.Tensor] = None,
|
1164 |
+
images: List[List[torch.Tensor]] = None,
|
1165 |
position_ids: Optional[torch.Tensor] = None,
|
1166 |
attention_mask: Optional[torch.Tensor] = None,
|
1167 |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
|
|
1178 |
|
1179 |
transformer_outputs = self.transformer(
|
1180 |
input_ids=input_ids,
|
1181 |
+
images=images,
|
1182 |
position_ids=position_ids,
|
1183 |
attention_mask=attention_mask,
|
1184 |
past_key_values=past_key_values,
|
|
|
1195 |
|
1196 |
loss = None
|
1197 |
if labels is not None:
|
1198 |
+
new_labels = []
|
1199 |
+
for i in range(len(input_ids)):
|
1200 |
+
input_id = input_ids[i].tolist()
|
1201 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
|
1202 |
+
self.config.eoi_token_id)
|
1203 |
+
assert eoi_token_pos - boi_token_pos == 2
|
1204 |
+
|
1205 |
+
new_labels.append(torch.cat(
|
1206 |
+
(
|
1207 |
+
labels[i, :boi_token_pos + 1],
|
1208 |
+
torch.tensor([-100]).to(labels.device).to(labels.dtype).repeat(1600),
|
1209 |
+
labels[i, eoi_token_pos:])))
|
1210 |
+
|
1211 |
+
labels = torch.stack(new_labels, dim=0)
|
1212 |
lm_logits = lm_logits.to(torch.float32)
|
|
|
|
|
1213 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1214 |
shift_labels = labels[..., 1:].contiguous()
|
|
|
1215 |
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1216 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1217 |
|
|
|
1249 |
for layer_past in past
|
1250 |
)
|
1251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1252 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1253 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
1254 |
super().__init__(config)
|
|
|
1256 |
self.num_labels = config.num_labels
|
1257 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1258 |
|
1259 |
+
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
|
1260 |
if config.classifier_dropout is not None:
|
1261 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1262 |
else:
|
|
|
1273 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1274 |
labels: Optional[torch.LongTensor] = None,
|
1275 |
use_cache: Optional[bool] = None,
|
|
|
1276 |
output_hidden_states: Optional[bool] = None,
|
1277 |
return_dict: Optional[bool] = None,
|
1278 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
|
|
1286 |
past_key_values=past_key_values,
|
1287 |
inputs_embeds=inputs_embeds,
|
1288 |
use_cache=use_cache,
|
|
|
1289 |
output_hidden_states=output_hidden_states,
|
1290 |
return_dict=return_dict,
|
1291 |
)
|
1292 |
|
1293 |
hidden_states = transformer_outputs[0]
|
1294 |
+
pooled_hidden_states = hidden_states[-1]
|
1295 |
if self.dropout is not None:
|
1296 |
pooled_hidden_states = self.dropout(pooled_hidden_states)
|
1297 |
logits = self.classifier_head(pooled_hidden_states)
|
|
|
1329 |
past_key_values=transformer_outputs.past_key_values,
|
1330 |
hidden_states=transformer_outputs.hidden_states,
|
1331 |
attentions=transformer_outputs.attentions,
|
1332 |
+
)
|
tokenization_chatglm.py
CHANGED
@@ -3,8 +3,10 @@ import base64
|
|
3 |
import os
|
4 |
import json
|
5 |
import tiktoken
|
|
|
6 |
from torch import TensorType
|
7 |
from typing import List, Optional, Union, Dict, Any
|
|
|
8 |
from transformers import PreTrainedTokenizer
|
9 |
from transformers.utils import logging, PaddingStrategy
|
10 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
@@ -20,6 +22,7 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
20 |
padding_side="left",
|
21 |
clean_up_tokenization_spaces=False,
|
22 |
encode_special_tokens=False,
|
|
|
23 |
**kwargs
|
24 |
):
|
25 |
self.name = "GLM4Tokenizer"
|
@@ -27,6 +30,7 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
27 |
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
28 |
self.pat_str = re.compile(pat_str)
|
29 |
self.encode_special_tokens = encode_special_tokens
|
|
|
30 |
|
31 |
mergeable_ranks = {}
|
32 |
with open(vocab_file) as f:
|
@@ -130,109 +134,143 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
130 |
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
|
131 |
return prefix_tokens
|
132 |
|
133 |
-
def build_single_message(self, role, metadata, message, tokenize=True):
|
134 |
assert role in ["system", "user", "assistant", "observation"], role
|
135 |
if tokenize:
|
136 |
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
|
137 |
disallowed_special=())
|
138 |
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
|
|
|
|
139 |
tokens = role_tokens + message_tokens
|
140 |
return tokens
|
141 |
else:
|
142 |
return str(f"<|{role}|>{metadata}\n{message}")
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
def build_inputs_with_special_tokens(
|
238 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
|
3 |
import os
|
4 |
import json
|
5 |
import tiktoken
|
6 |
+
import torch
|
7 |
from torch import TensorType
|
8 |
from typing import List, Optional, Union, Dict, Any
|
9 |
+
from torchvision import transforms
|
10 |
from transformers import PreTrainedTokenizer
|
11 |
from transformers.utils import logging, PaddingStrategy
|
12 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
|
|
22 |
padding_side="left",
|
23 |
clean_up_tokenization_spaces=False,
|
24 |
encode_special_tokens=False,
|
25 |
+
image_size=None,
|
26 |
**kwargs
|
27 |
):
|
28 |
self.name = "GLM4Tokenizer"
|
|
|
30 |
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
31 |
self.pat_str = re.compile(pat_str)
|
32 |
self.encode_special_tokens = encode_special_tokens
|
33 |
+
self.image_size = image_size
|
34 |
|
35 |
mergeable_ranks = {}
|
36 |
with open(vocab_file) as f:
|
|
|
134 |
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
|
135 |
return prefix_tokens
|
136 |
|
137 |
+
def build_single_message(self, role, metadata, message, tokenize=True, message_prefix=None):
|
138 |
assert role in ["system", "user", "assistant", "observation"], role
|
139 |
if tokenize:
|
140 |
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
|
141 |
disallowed_special=())
|
142 |
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
143 |
+
if message_prefix is not None:
|
144 |
+
message_tokens = message_prefix + message_tokens
|
145 |
tokens = role_tokens + message_tokens
|
146 |
return tokens
|
147 |
else:
|
148 |
return str(f"<|{role}|>{metadata}\n{message}")
|
149 |
|
150 |
+
def apply_chat_template(
|
151 |
+
self,
|
152 |
+
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
|
153 |
+
add_generation_prompt: bool = False,
|
154 |
+
tokenize: bool = True,
|
155 |
+
padding: bool = False,
|
156 |
+
truncation: bool = False,
|
157 |
+
max_length: Optional[int] = None,
|
158 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
159 |
+
return_dict: bool = False,
|
160 |
+
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
161 |
+
add_special_tokens: bool = True,
|
162 |
+
**kwargs,
|
163 |
+
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
|
164 |
+
|
165 |
+
if return_dict and not tokenize:
|
166 |
+
raise ValueError(
|
167 |
+
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
|
168 |
+
"of tokenizer outputs to return."
|
169 |
+
)
|
170 |
+
|
171 |
+
def handle_single_conversation(conversation):
|
172 |
+
input_ids = self.get_prefix_tokens() if add_special_tokens else []
|
173 |
+
input_message = "[gMASK]<sop>" if add_special_tokens else ""
|
174 |
+
input_image = None
|
175 |
+
transform = transforms.Compose(
|
176 |
+
[
|
177 |
+
transforms.Resize(
|
178 |
+
(self.image_size, self.image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
179 |
+
),
|
180 |
+
transforms.ToTensor(),
|
181 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
182 |
+
]
|
183 |
+
)
|
184 |
+
for item in conversation:
|
185 |
+
if item.get("tools"):
|
186 |
+
tools = item["tools"]
|
187 |
+
content = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
|
188 |
+
for tool in tools:
|
189 |
+
if tool["type"] == "function":
|
190 |
+
function = tool["function"]
|
191 |
+
content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
|
192 |
+
content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
|
193 |
+
elif tool["type"] == "python":
|
194 |
+
content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
|
195 |
+
elif tool["type"] == "simple_browser":
|
196 |
+
content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
|
197 |
+
elif tool["type"] == "cogview":
|
198 |
+
content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
|
199 |
+
else:
|
200 |
+
raise NotImplementedError(f"Unknown tool type {tool['type']}")
|
201 |
+
input = self.build_single_message("system", "", content, tokenize=tokenize)
|
202 |
+
if tokenize:
|
203 |
+
input_ids.extend(input)
|
204 |
+
else:
|
205 |
+
input_message += input
|
206 |
+
message = ""
|
207 |
+
message_prefix = None
|
208 |
+
if item.get("image"):
|
209 |
+
assert input_image is None, "Multiple images are not supported"
|
210 |
+
input_image = transform(item["image"])
|
211 |
+
message_prefix = self.convert_tokens_to_ids(
|
212 |
+
["<|begin_of_image|>", "<|endoftext|>", "<|end_of_image|>"])
|
213 |
+
if item.get("content"):
|
214 |
+
message += item["content"]
|
215 |
+
if message or message_prefix:
|
216 |
+
input = self.build_single_message(
|
217 |
+
item["role"],
|
218 |
+
item.get("metadata", ""),
|
219 |
+
message,
|
220 |
+
tokenize=tokenize,
|
221 |
+
message_prefix=message_prefix
|
222 |
+
)
|
223 |
+
if tokenize:
|
224 |
+
input_ids.extend(input)
|
225 |
+
else:
|
226 |
+
input_message += input
|
227 |
+
if add_generation_prompt:
|
228 |
+
if tokenize:
|
229 |
+
input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
|
230 |
+
else:
|
231 |
+
input_message += "<|assistant|>"
|
232 |
+
return {"input": input_ids if tokenize else input_message, "image": input_image}
|
233 |
+
|
234 |
+
# Main logic to handle different conversation formats
|
235 |
+
if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
|
236 |
+
result = handle_single_conversation(conversation)
|
237 |
+
input_ids = result["input"]
|
238 |
+
input_images = [result["image"]]
|
239 |
+
elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
|
240 |
+
results = [handle_single_conversation(c) for c in conversation]
|
241 |
+
input_ids = [item["input"] for item in results]
|
242 |
+
input_images = [item["image"] for item in results]
|
243 |
+
elif hasattr(conversation, "messages"):
|
244 |
+
result = handle_single_conversation(conversation.messages)
|
245 |
+
input_ids = result["input"]
|
246 |
+
input_images = [result["image"]]
|
247 |
+
else:
|
248 |
+
raise ValueError("Invalid conversation format")
|
249 |
+
|
250 |
+
if tokenize:
|
251 |
+
output = self.batch_encode_plus(
|
252 |
+
[input_ids] if isinstance(input_ids[0], int) else input_ids,
|
253 |
+
padding=padding,
|
254 |
+
truncation=truncation,
|
255 |
+
max_length=max_length,
|
256 |
+
return_tensors=return_tensors,
|
257 |
+
is_split_into_words=True,
|
258 |
+
add_special_tokens=False
|
259 |
+
)
|
260 |
+
if return_dict:
|
261 |
+
found_image = False
|
262 |
+
for image in input_images:
|
263 |
+
if image is not None:
|
264 |
+
found_image = True
|
265 |
+
break
|
266 |
+
if found_image:
|
267 |
+
output["images"] = torch.stack(input_images)
|
268 |
+
return output
|
269 |
+
else:
|
270 |
+
return output["input_ids"]
|
271 |
+
else:
|
272 |
+
return input_ids
|
273 |
+
|
274 |
|
275 |
def build_inputs_with_special_tokens(
|
276 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
tokenizer_config.json
CHANGED
@@ -123,12 +123,12 @@
|
|
123 |
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
124 |
"<|begin_of_video|>", "<|end_of_video|>"],
|
125 |
"clean_up_tokenization_spaces": false,
|
126 |
-
"chat_template": "[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n在调用上述函数时,请使用 Json 格式表示调用的参数。{% elif tool['type'] == 'python' %}\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。{% elif tool['type'] == 'simple_browser' %}\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。{% elif tool['type'] == 'cogview' %}\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
|
127 |
"do_lower_case": false,
|
128 |
"eos_token": "<|endoftext|>",
|
129 |
"pad_token": "<|endoftext|>",
|
130 |
-
"model_max_length":
|
131 |
"padding_side": "left",
|
132 |
"remove_space": false,
|
133 |
-
"tokenizer_class": "ChatGLM4Tokenizer"
|
|
|
134 |
}
|
|
|
123 |
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
124 |
"<|begin_of_video|>", "<|end_of_video|>"],
|
125 |
"clean_up_tokenization_spaces": false,
|
|
|
126 |
"do_lower_case": false,
|
127 |
"eos_token": "<|endoftext|>",
|
128 |
"pad_token": "<|endoftext|>",
|
129 |
+
"model_max_length": 8192,
|
130 |
"padding_side": "left",
|
131 |
"remove_space": false,
|
132 |
+
"tokenizer_class": "ChatGLM4Tokenizer",
|
133 |
+
"image_size": 1120
|
134 |
}
|
visual.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from argparse import Namespace
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
import math
|
7 |
+
from torch.nn import LayerNorm
|
8 |
+
|
9 |
+
|
10 |
+
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
11 |
+
if scaling_attention_score:
|
12 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
13 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
14 |
+
|
15 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
16 |
+
|
17 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
18 |
+
return context_layer
|
19 |
+
|
20 |
+
|
21 |
+
def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
22 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
|
23 |
+
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
|
24 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
25 |
+
query_layer, key_layer, value_layer,
|
26 |
+
attn_mask=None,
|
27 |
+
dropout_p=0.,
|
28 |
+
is_causal=False
|
29 |
+
)
|
30 |
+
return attn_output
|
31 |
+
else:
|
32 |
+
return standard_attention(
|
33 |
+
query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
class PatchEmbedding(nn.Module):
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size,
|
41 |
+
stride=config.patch_size)
|
42 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
43 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
44 |
+
|
45 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
46 |
+
x = self.proj(images)
|
47 |
+
x = x.flatten(2).transpose(1, 2)
|
48 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
49 |
+
x = torch.cat((cls_token, x), dim=1)
|
50 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class Attention(nn.Module):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.num_heads = config.num_heads
|
58 |
+
head_dim = config.hidden_size // config.num_heads
|
59 |
+
self.scale = head_dim ** -0.5
|
60 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
61 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
62 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
63 |
+
|
64 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
65 |
+
B, L, _ = x.shape
|
66 |
+
qkv = self.query_key_value(x)
|
67 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
|
68 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
69 |
+
|
70 |
+
out = attention_fn_default(
|
71 |
+
q, k, v
|
72 |
+
)
|
73 |
+
output = self.dense(out.transpose(1, 2).reshape(B, L, -1))
|
74 |
+
output = self.output_dropout(output)
|
75 |
+
return output
|
76 |
+
|
77 |
+
def attention(self, q, k, v):
|
78 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
79 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
80 |
+
output = torch.matmul(attn_weights, v)
|
81 |
+
return output
|
82 |
+
|
83 |
+
|
84 |
+
class MLP(nn.Module):
|
85 |
+
def __init__(self, config):
|
86 |
+
super().__init__()
|
87 |
+
self.config = config
|
88 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
89 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
90 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
x = self.fc1(x)
|
94 |
+
x = self.activation_fn(x)
|
95 |
+
x = self.fc2(x)
|
96 |
+
return x
|
97 |
+
|
98 |
+
|
99 |
+
class TransformerLayer(nn.Module):
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__()
|
102 |
+
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
103 |
+
self.attention = Attention(config)
|
104 |
+
self.mlp = MLP(config)
|
105 |
+
self.post_attention_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
106 |
+
|
107 |
+
def forward(self, hidden_states):
|
108 |
+
attention_input = hidden_states
|
109 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
110 |
+
hidden_states = attention_input + attention_output
|
111 |
+
mlp_input = hidden_states
|
112 |
+
|
113 |
+
# https://github.com/THUDM/GLM-4/issues/350
|
114 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input)).to(mlp_input.device)
|
115 |
+
output = mlp_input + mlp_output
|
116 |
+
return output
|
117 |
+
|
118 |
+
|
119 |
+
class Transformer(nn.Module):
|
120 |
+
def __init__(self, config):
|
121 |
+
super().__init__()
|
122 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
123 |
+
|
124 |
+
def forward(self, hidden_states):
|
125 |
+
for layer_module in self.layers:
|
126 |
+
hidden_states = layer_module(hidden_states)
|
127 |
+
return hidden_states
|
128 |
+
|
129 |
+
|
130 |
+
class GLU(nn.Module):
|
131 |
+
def __init__(self, config, in_features):
|
132 |
+
super().__init__()
|
133 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
134 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
135 |
+
self.act1 = nn.GELU()
|
136 |
+
self.act2 = nn.functional.silu
|
137 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
|
138 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
|
139 |
+
self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=False)
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
x = self.linear_proj(x)
|
143 |
+
x = self.act1(self.norm1(x))
|
144 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
145 |
+
x = self.dense_4h_to_h(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
class EVA2CLIPModel(nn.Module):
|
150 |
+
def __init__(self, config):
|
151 |
+
super().__init__()
|
152 |
+
vision_config = Namespace(**config.vision_config)
|
153 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
154 |
+
self.transformer = Transformer(vision_config)
|
155 |
+
self.linear_proj = GLU(config, in_features=config.hidden_size)
|
156 |
+
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=config.hidden_size, kernel_size=2,
|
157 |
+
stride=2)
|
158 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
159 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
160 |
+
self.scaling_factor = vision_config.scaling_factor
|
161 |
+
|
162 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
163 |
+
x = self.patch_embedding(images)
|
164 |
+
x = self.transformer(x)
|
165 |
+
x = x[:, 1:]
|
166 |
+
|
167 |
+
b, s, h = x.shape
|
168 |
+
grid_size = int(s ** 0.5)
|
169 |
+
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
|
170 |
+
x = self.conv(x)
|
171 |
+
|
172 |
+
x = x.flatten(2).transpose(1, 2)
|
173 |
+
x = self.linear_proj(x)
|
174 |
+
|
175 |
+
# https://github.com/THUDM/GLM-4/issues/350
|
176 |
+
boi = self.boi.expand(x.shape[0], -1, -1).to(x.device)
|
177 |
+
eoi = self.eoi.expand(x.shape[0], -1, -1).to(x.device)
|
178 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
179 |
+
x = x / self.scaling_factor
|
180 |
+
return x
|