JosephusCheung
commited on
Commit
•
50e6685
1
Parent(s):
5e3a6ee
Upload 3 files
Browse files- eval/evaluate_chatml_ceval.py +632 -0
- eval/evaluate_chatml_gsm8k.py +358 -0
- eval/evaluate_chatml_mmlu.py +381 -0
eval/evaluate_chatml_ceval.py
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
import datasets
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
from thefuzz import process
|
9 |
+
from typing import List
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers.trainer_utils import set_seed
|
12 |
+
|
13 |
+
from typing import Tuple, List, Union, Iterable
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from transformers import PreTrainedTokenizer
|
19 |
+
from transformers import logging
|
20 |
+
from transformers.generation import LogitsProcessor
|
21 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
22 |
+
HistoryType = List[Tuple[str, str]]
|
23 |
+
TokensType = List[int]
|
24 |
+
BatchTokensType = List[List[int]]
|
25 |
+
|
26 |
+
def make_context(
|
27 |
+
tokenizer: PreTrainedTokenizer,
|
28 |
+
query: str,
|
29 |
+
history: List[Tuple[str, str]] = None,
|
30 |
+
system: str = "",
|
31 |
+
max_window_size: int = 6144,
|
32 |
+
chat_format: str = "chatml",
|
33 |
+
):
|
34 |
+
if history is None:
|
35 |
+
history = []
|
36 |
+
|
37 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
38 |
+
im_start_tokens = [tokenizer.im_start_id]
|
39 |
+
im_end_tokens = [tokenizer.im_end_id]
|
40 |
+
nl_tokens = tokenizer.encode("\n")
|
41 |
+
|
42 |
+
def _tokenize_str(role, content):
|
43 |
+
return f"{role}\n{content}", tokenizer.encode(
|
44 |
+
role
|
45 |
+
) + nl_tokens + tokenizer.encode(content)
|
46 |
+
|
47 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
48 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
49 |
+
|
50 |
+
raw_text = ""
|
51 |
+
context_tokens = []
|
52 |
+
|
53 |
+
for turn_query, turn_response in reversed(history):
|
54 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
55 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
56 |
+
response_text, response_tokens_part = _tokenize_str(
|
57 |
+
"assistant", turn_response
|
58 |
+
)
|
59 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
60 |
+
|
61 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
62 |
+
prev_chat = (
|
63 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
64 |
+
)
|
65 |
+
|
66 |
+
current_context_size = (
|
67 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
68 |
+
)
|
69 |
+
if current_context_size < max_window_size:
|
70 |
+
context_tokens = next_context_tokens + context_tokens
|
71 |
+
raw_text = prev_chat + raw_text
|
72 |
+
else:
|
73 |
+
break
|
74 |
+
|
75 |
+
context_tokens = system_tokens + context_tokens
|
76 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
77 |
+
context_tokens += (
|
78 |
+
nl_tokens
|
79 |
+
+ im_start_tokens
|
80 |
+
+ _tokenize_str("user", query)[1]
|
81 |
+
+ im_end_tokens
|
82 |
+
+ nl_tokens
|
83 |
+
+ im_start_tokens
|
84 |
+
+ tokenizer.encode("assistant")
|
85 |
+
+ nl_tokens
|
86 |
+
)
|
87 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
88 |
+
|
89 |
+
return raw_text, context_tokens
|
90 |
+
|
91 |
+
def chat(
|
92 |
+
model,
|
93 |
+
tokenizer: PreTrainedTokenizer,
|
94 |
+
query: str,
|
95 |
+
history: Optional[HistoryType],
|
96 |
+
system: str = "You are a helpful assistant.",
|
97 |
+
append_history: bool = True
|
98 |
+
) -> Tuple[str, HistoryType]:
|
99 |
+
|
100 |
+
|
101 |
+
if history is None:
|
102 |
+
history = []
|
103 |
+
|
104 |
+
raw_text, context_tokens = make_context(
|
105 |
+
tokenizer,
|
106 |
+
query,
|
107 |
+
history=history,
|
108 |
+
system=system,
|
109 |
+
max_window_size=6144,
|
110 |
+
chat_format = "chatml",
|
111 |
+
)
|
112 |
+
|
113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
+
input_ids = torch.tensor([context_tokens]).cuda()
|
115 |
+
outputs = model.generate(
|
116 |
+
input_ids,
|
117 |
+
# stop_words_ids = stop_words_ids,
|
118 |
+
return_dict_in_generate = False,
|
119 |
+
)
|
120 |
+
|
121 |
+
response = decode_tokens(
|
122 |
+
outputs[0],
|
123 |
+
tokenizer,
|
124 |
+
raw_text_len=len(raw_text),
|
125 |
+
context_length=len(context_tokens),
|
126 |
+
chat_format='chatml',
|
127 |
+
verbose=False,
|
128 |
+
)
|
129 |
+
|
130 |
+
if append_history:
|
131 |
+
history.append((query, response))
|
132 |
+
|
133 |
+
return response, history
|
134 |
+
|
135 |
+
def decode_tokens(
|
136 |
+
tokens: Union[torch.LongTensor, TokensType],
|
137 |
+
tokenizer: PreTrainedTokenizer,
|
138 |
+
raw_text_len: int,
|
139 |
+
context_length: int,
|
140 |
+
chat_format: str = "chatml",
|
141 |
+
verbose: bool = False,
|
142 |
+
return_end_reason: bool = False,
|
143 |
+
) -> str:
|
144 |
+
if torch.is_tensor(tokens):
|
145 |
+
tokens = tokens.cpu().numpy().tolist()
|
146 |
+
|
147 |
+
|
148 |
+
return _decode_chatml(
|
149 |
+
tokens,
|
150 |
+
stop_words=[],
|
151 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
152 |
+
tokenizer=tokenizer,
|
153 |
+
raw_text_len=raw_text_len,
|
154 |
+
context_length=context_length,
|
155 |
+
verbose=verbose,
|
156 |
+
return_end_reason=return_end_reason,
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
def _decode_chatml(
|
161 |
+
tokens: List[int],
|
162 |
+
*,
|
163 |
+
stop_words: List[str],
|
164 |
+
eod_token_ids: List[int],
|
165 |
+
tokenizer: PreTrainedTokenizer,
|
166 |
+
raw_text_len: int,
|
167 |
+
context_length: int,
|
168 |
+
verbose: bool = False,
|
169 |
+
return_end_reason: bool = False,
|
170 |
+
chat_format = "chatml",
|
171 |
+
):
|
172 |
+
end_reason = f"Gen length {len(tokens)}"
|
173 |
+
eod_token_idx = context_length
|
174 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
175 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
176 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
177 |
+
break
|
178 |
+
|
179 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
180 |
+
if verbose:
|
181 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
182 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
183 |
+
print("\nEnd Reason:", end_reason)
|
184 |
+
for stop_word in stop_words:
|
185 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
186 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
187 |
+
if verbose:
|
188 |
+
print("\nGenerate:", trim_decode_tokens)
|
189 |
+
|
190 |
+
if return_end_reason:
|
191 |
+
return trim_decode_tokens, end_reason
|
192 |
+
else:
|
193 |
+
return trim_decode_tokens
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
def load_models_tokenizer(args):
|
198 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
199 |
+
from transformers.generation import GenerationConfig
|
200 |
+
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
202 |
+
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
|
203 |
+
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
204 |
+
model.generation_config.do_sample = False # use greedy decoding
|
205 |
+
return model, tokenizer
|
206 |
+
|
207 |
+
|
208 |
+
def process_before_extraction(gen, question, choice_dict):
|
209 |
+
# Example Prompt:
|
210 |
+
# 关于传输层的面向连接服务的特性是____。
|
211 |
+
# A. 既不保证可靠,也不保证按序交付
|
212 |
+
# B. 不保证可靠,但保证按序交付
|
213 |
+
# C. 保证可靠,但不保证按序交付
|
214 |
+
# D. 既保证可靠,也保证按序交付
|
215 |
+
# Example Model Output:
|
216 |
+
# 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
|
217 |
+
# Processed Output:
|
218 |
+
# 答案是D
|
219 |
+
|
220 |
+
question_split = question.rstrip("。").split("。")[-1].split("_")
|
221 |
+
|
222 |
+
# replacing the question
|
223 |
+
if len(question_split[0].strip()) > 4:
|
224 |
+
gen = gen.replace(question_split[0], "答案是")
|
225 |
+
if len(question_split[-1].strip()) > 4:
|
226 |
+
gen = gen.replace(question_split[-1], "")
|
227 |
+
|
228 |
+
# replace the choice by letter in the generated sentence
|
229 |
+
# from longest one to shortest one
|
230 |
+
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
231 |
+
gen = gen.replace(val.rstrip("。"), key)
|
232 |
+
return gen
|
233 |
+
|
234 |
+
|
235 |
+
def count_substr(gen, pattern):
|
236 |
+
return len(re.findall(pattern, gen))
|
237 |
+
|
238 |
+
|
239 |
+
def extract_choice(gen, prompt, choice_list):
|
240 |
+
# 答案是A | 选项是A | 应该选A选项
|
241 |
+
res = re.search(
|
242 |
+
r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))",
|
243 |
+
gen,
|
244 |
+
)
|
245 |
+
|
246 |
+
# A选项正确 | A选项符合题意
|
247 |
+
if res is None:
|
248 |
+
res = re.search(
|
249 |
+
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
|
250 |
+
gen,
|
251 |
+
)
|
252 |
+
|
253 |
+
# 直接输出 A
|
254 |
+
if res is None:
|
255 |
+
res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen)
|
256 |
+
|
257 |
+
# 获取第一个出现的字母
|
258 |
+
if res is None:
|
259 |
+
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
260 |
+
|
261 |
+
if res is None:
|
262 |
+
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
263 |
+
return res.group(1)
|
264 |
+
|
265 |
+
|
266 |
+
def format_example(line):
|
267 |
+
example = line["question"] + "\n\n"
|
268 |
+
for choice in choices:
|
269 |
+
example += f'{choice}. {line[f"{choice}"]}\n'
|
270 |
+
return example
|
271 |
+
|
272 |
+
|
273 |
+
def extract_answer(response, row):
|
274 |
+
prompt = row["question"]
|
275 |
+
gen = process_before_extraction(
|
276 |
+
response, prompt, {choice: row[choice] for choice in choices}
|
277 |
+
)
|
278 |
+
if not isinstance(prompt, str):
|
279 |
+
prompt = prompt[0]
|
280 |
+
pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
|
281 |
+
return pred
|
282 |
+
|
283 |
+
|
284 |
+
@torch.no_grad()
|
285 |
+
def eval_subject(
|
286 |
+
model,
|
287 |
+
tokenizer,
|
288 |
+
subject_name,
|
289 |
+
test_df,
|
290 |
+
save_result_dir=None,
|
291 |
+
overwrite=False,
|
292 |
+
**kwargs
|
293 |
+
):
|
294 |
+
result_path = os.path.join(save_result_dir, f"{subject_name}_result.csv")
|
295 |
+
if not overwrite and os.path.exists(result_path):
|
296 |
+
print(f"{result_path} existed, skip!")
|
297 |
+
score = []
|
298 |
+
for (_, datarow), (_, resultrow) in zip(
|
299 |
+
test_df.iterrows(), pd.read_csv(result_path).iterrows()
|
300 |
+
):
|
301 |
+
pred = extract_answer(resultrow["model_response"], datarow)
|
302 |
+
correct = 1 if pred == datarow["answer"] else 0
|
303 |
+
score.append(correct)
|
304 |
+
correct_ratio = 100 * sum(score) / len(score)
|
305 |
+
return correct_ratio
|
306 |
+
|
307 |
+
responses = []
|
308 |
+
result = []
|
309 |
+
score = []
|
310 |
+
|
311 |
+
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
312 |
+
question = format_example(row)
|
313 |
+
|
314 |
+
response, _ = chat(
|
315 |
+
model,
|
316 |
+
tokenizer,
|
317 |
+
question,
|
318 |
+
history=None,
|
319 |
+
)
|
320 |
+
print(question)
|
321 |
+
print(response)
|
322 |
+
pred = extract_answer(response, row)
|
323 |
+
print(pred)
|
324 |
+
print("======================")
|
325 |
+
|
326 |
+
if "answer" in row:
|
327 |
+
correct = 1 if pred == row["answer"] else 0
|
328 |
+
score.append(correct)
|
329 |
+
if args.debug:
|
330 |
+
print(f'{question} pred: {pred} ref: {row["answer"]}')
|
331 |
+
responses.append(response)
|
332 |
+
result.append(pred)
|
333 |
+
|
334 |
+
if score:
|
335 |
+
correct_ratio = 100 * sum(score) / len(score)
|
336 |
+
if args.debug:
|
337 |
+
print(subject_name, correct_ratio)
|
338 |
+
else:
|
339 |
+
correct_ratio = 0
|
340 |
+
if save_result_dir:
|
341 |
+
test_df["model_response"] = responses
|
342 |
+
test_df["model_output"] = result
|
343 |
+
if score:
|
344 |
+
test_df["correctness"] = score
|
345 |
+
os.makedirs(save_result_dir, exist_ok=True)
|
346 |
+
test_df.to_csv(result_path, encoding="utf-8", index=False)
|
347 |
+
|
348 |
+
return correct_ratio
|
349 |
+
|
350 |
+
|
351 |
+
def cal_ceval(res):
|
352 |
+
acc_sum_dict = dict()
|
353 |
+
acc_norm_sum_dict = dict()
|
354 |
+
cnt_dict = dict()
|
355 |
+
acc_sum = 0.0
|
356 |
+
cnt = 0
|
357 |
+
hard_cnt = 0
|
358 |
+
hard_acc_sum = 0.0
|
359 |
+
for tt in res.keys():
|
360 |
+
name = tt.split("-")[-1]
|
361 |
+
acc_sum += float(res[tt])
|
362 |
+
cnt += 1
|
363 |
+
class_ = TASK_NAME_MAPPING[name][2]
|
364 |
+
if class_ not in acc_sum_dict:
|
365 |
+
acc_sum_dict[class_] = 0.0
|
366 |
+
acc_norm_sum_dict[class_] = 0.0
|
367 |
+
cnt_dict[class_] = 0.0
|
368 |
+
if name in hard_list:
|
369 |
+
hard_cnt += 1
|
370 |
+
hard_acc_sum += float(res[tt])
|
371 |
+
acc_sum_dict[class_] += float(res[tt])
|
372 |
+
cnt_dict[class_] += 1
|
373 |
+
print("\n\n\n")
|
374 |
+
for k in ["STEM", "Social Science", "Humanities", "Other"]:
|
375 |
+
if k in cnt_dict:
|
376 |
+
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
|
377 |
+
if hard_cnt > 0:
|
378 |
+
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
|
379 |
+
print("AVERAGE acc:%.2f " % (acc_sum / cnt))
|
380 |
+
|
381 |
+
|
382 |
+
TASK_NAME_MAPPING = {
|
383 |
+
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
|
384 |
+
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
|
385 |
+
"computer_architecture": [
|
386 |
+
"Computer Architecture",
|
387 |
+
"\u8ba1\u7b97\u673a\u7ec4\u6210",
|
388 |
+
"STEM",
|
389 |
+
],
|
390 |
+
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
|
391 |
+
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
|
392 |
+
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
|
393 |
+
"advanced_mathematics": [
|
394 |
+
"Advanced Mathematics",
|
395 |
+
"\u9ad8\u7b49\u6570\u5b66",
|
396 |
+
"STEM",
|
397 |
+
],
|
398 |
+
"probability_and_statistics": [
|
399 |
+
"Probability and Statistics",
|
400 |
+
"\u6982\u7387\u7edf\u8ba1",
|
401 |
+
"STEM",
|
402 |
+
],
|
403 |
+
"discrete_mathematics": [
|
404 |
+
"Discrete Mathematics",
|
405 |
+
"\u79bb\u6563\u6570\u5b66",
|
406 |
+
"STEM",
|
407 |
+
],
|
408 |
+
"electrical_engineer": [
|
409 |
+
"Electrical Engineer",
|
410 |
+
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
|
411 |
+
"STEM",
|
412 |
+
],
|
413 |
+
"metrology_engineer": [
|
414 |
+
"Metrology Engineer",
|
415 |
+
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
|
416 |
+
"STEM",
|
417 |
+
],
|
418 |
+
"high_school_mathematics": [
|
419 |
+
"High School Mathematics",
|
420 |
+
"\u9ad8\u4e2d\u6570\u5b66",
|
421 |
+
"STEM",
|
422 |
+
],
|
423 |
+
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
|
424 |
+
"high_school_chemistry": [
|
425 |
+
"High School Chemistry",
|
426 |
+
"\u9ad8\u4e2d\u5316\u5b66",
|
427 |
+
"STEM",
|
428 |
+
],
|
429 |
+
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
|
430 |
+
"middle_school_mathematics": [
|
431 |
+
"Middle School Mathematics",
|
432 |
+
"\u521d\u4e2d\u6570\u5b66",
|
433 |
+
"STEM",
|
434 |
+
],
|
435 |
+
"middle_school_biology": [
|
436 |
+
"Middle School Biology",
|
437 |
+
"\u521d\u4e2d\u751f\u7269",
|
438 |
+
"STEM",
|
439 |
+
],
|
440 |
+
"middle_school_physics": [
|
441 |
+
"Middle School Physics",
|
442 |
+
"\u521d\u4e2d\u7269\u7406",
|
443 |
+
"STEM",
|
444 |
+
],
|
445 |
+
"middle_school_chemistry": [
|
446 |
+
"Middle School Chemistry",
|
447 |
+
"\u521d\u4e2d\u5316\u5b66",
|
448 |
+
"STEM",
|
449 |
+
],
|
450 |
+
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
|
451 |
+
"college_economics": [
|
452 |
+
"College Economics",
|
453 |
+
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
|
454 |
+
"Social Science",
|
455 |
+
],
|
456 |
+
"business_administration": [
|
457 |
+
"Business Administration",
|
458 |
+
"\u5de5\u5546\u7ba1\u7406",
|
459 |
+
"Social Science",
|
460 |
+
],
|
461 |
+
"marxism": [
|
462 |
+
"Marxism",
|
463 |
+
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
|
464 |
+
"Social Science",
|
465 |
+
],
|
466 |
+
"mao_zedong_thought": [
|
467 |
+
"Mao Zedong Thought",
|
468 |
+
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
|
469 |
+
"Social Science",
|
470 |
+
],
|
471 |
+
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
|
472 |
+
"teacher_qualification": [
|
473 |
+
"Teacher Qualification",
|
474 |
+
"\u6559\u5e08\u8d44\u683c",
|
475 |
+
"Social Science",
|
476 |
+
],
|
477 |
+
"high_school_politics": [
|
478 |
+
"High School Politics",
|
479 |
+
"\u9ad8\u4e2d\u653f\u6cbb",
|
480 |
+
"Social Science",
|
481 |
+
],
|
482 |
+
"high_school_geography": [
|
483 |
+
"High School Geography",
|
484 |
+
"\u9ad8\u4e2d\u5730\u7406",
|
485 |
+
"Social Science",
|
486 |
+
],
|
487 |
+
"middle_school_politics": [
|
488 |
+
"Middle School Politics",
|
489 |
+
"\u521d\u4e2d\u653f\u6cbb",
|
490 |
+
"Social Science",
|
491 |
+
],
|
492 |
+
"middle_school_geography": [
|
493 |
+
"Middle School Geography",
|
494 |
+
"\u521d\u4e2d\u5730\u7406",
|
495 |
+
"Social Science",
|
496 |
+
],
|
497 |
+
"modern_chinese_history": [
|
498 |
+
"Modern Chinese History",
|
499 |
+
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
|
500 |
+
"Humanities",
|
501 |
+
],
|
502 |
+
"ideological_and_moral_cultivation": [
|
503 |
+
"Ideological and Moral Cultivation",
|
504 |
+
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
|
505 |
+
"Humanities",
|
506 |
+
],
|
507 |
+
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
|
508 |
+
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
|
509 |
+
"chinese_language_and_literature": [
|
510 |
+
"Chinese Language and Literature",
|
511 |
+
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
|
512 |
+
"Humanities",
|
513 |
+
],
|
514 |
+
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
|
515 |
+
"professional_tour_guide": [
|
516 |
+
"Professional Tour Guide",
|
517 |
+
"\u5bfc\u6e38\u8d44\u683c",
|
518 |
+
"Humanities",
|
519 |
+
],
|
520 |
+
"legal_professional": [
|
521 |
+
"Legal Professional",
|
522 |
+
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
|
523 |
+
"Humanities",
|
524 |
+
],
|
525 |
+
"high_school_chinese": [
|
526 |
+
"High School Chinese",
|
527 |
+
"\u9ad8\u4e2d\u8bed\u6587",
|
528 |
+
"Humanities",
|
529 |
+
],
|
530 |
+
"high_school_history": [
|
531 |
+
"High School History",
|
532 |
+
"\u9ad8\u4e2d\u5386\u53f2",
|
533 |
+
"Humanities",
|
534 |
+
],
|
535 |
+
"middle_school_history": [
|
536 |
+
"Middle School History",
|
537 |
+
"\u521d\u4e2d\u5386\u53f2",
|
538 |
+
"Humanities",
|
539 |
+
],
|
540 |
+
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
|
541 |
+
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
|
542 |
+
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
|
543 |
+
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
|
544 |
+
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
|
545 |
+
"urban_and_rural_planner": [
|
546 |
+
"Urban and Rural Planner",
|
547 |
+
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
|
548 |
+
"Other",
|
549 |
+
],
|
550 |
+
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
|
551 |
+
"fire_engineer": [
|
552 |
+
"Fire Engineer",
|
553 |
+
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
|
554 |
+
"Other",
|
555 |
+
],
|
556 |
+
"environmental_impact_assessment_engineer": [
|
557 |
+
"Environmental Impact Assessment Engineer",
|
558 |
+
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
|
559 |
+
"Other",
|
560 |
+
],
|
561 |
+
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
|
562 |
+
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
|
563 |
+
}
|
564 |
+
hard_list = [
|
565 |
+
"advanced_mathematics",
|
566 |
+
"discrete_mathematics",
|
567 |
+
"probability_and_statistics",
|
568 |
+
"college_physics",
|
569 |
+
"college_chemistry",
|
570 |
+
"high_school_mathematics",
|
571 |
+
"high_school_physics",
|
572 |
+
"high_school_chemistry",
|
573 |
+
]
|
574 |
+
choices = ["A", "B", "C", "D"]
|
575 |
+
|
576 |
+
|
577 |
+
def main(args):
|
578 |
+
print("loading model weights")
|
579 |
+
if args.checkpoint_path:
|
580 |
+
model, tokenizer = load_models_tokenizer(args)
|
581 |
+
else:
|
582 |
+
model, tokenizer = None, None
|
583 |
+
print("model loaded")
|
584 |
+
dev_result = {}
|
585 |
+
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
586 |
+
val_file_path = os.path.join(
|
587 |
+
args.eval_data_path, "val", f"{subject_name}_val.csv"
|
588 |
+
)
|
589 |
+
val_df = pd.read_csv(val_file_path)
|
590 |
+
|
591 |
+
score = eval_subject(
|
592 |
+
model,
|
593 |
+
tokenizer,
|
594 |
+
subject_name,
|
595 |
+
val_df,
|
596 |
+
save_result_dir="outs_chat/ceval_eval_result",
|
597 |
+
overwrite=args.overwrite,
|
598 |
+
)
|
599 |
+
dev_result[subject_name] = score
|
600 |
+
cal_ceval(dev_result)
|
601 |
+
|
602 |
+
|
603 |
+
if __name__ == "__main__":
|
604 |
+
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
605 |
+
parser.add_argument(
|
606 |
+
"-c",
|
607 |
+
"--checkpoint-path",
|
608 |
+
type=str,
|
609 |
+
help="Checkpoint path",
|
610 |
+
default="Qwen/Qwen-7B-Chat",
|
611 |
+
)
|
612 |
+
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
|
613 |
+
|
614 |
+
# Provide extra arguments required for tasks
|
615 |
+
group = parser.add_argument_group(title="Evaluation options")
|
616 |
+
group.add_argument(
|
617 |
+
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
|
618 |
+
)
|
619 |
+
group.add_argument(
|
620 |
+
"--debug", action="store_true", default=False, help="Print infos."
|
621 |
+
)
|
622 |
+
group.add_argument(
|
623 |
+
"--overwrite",
|
624 |
+
action="store_true",
|
625 |
+
default=False,
|
626 |
+
help="Overwrite existed results",
|
627 |
+
)
|
628 |
+
|
629 |
+
args = parser.parse_args()
|
630 |
+
set_seed(args.seed)
|
631 |
+
|
632 |
+
main(args)
|
eval/evaluate_chatml_gsm8k.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
from pathlib import Path
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import tqdm
|
7 |
+
from datasets import load_from_disk, load_dataset
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
from transformers.generation import GenerationConfig
|
10 |
+
|
11 |
+
import os
|
12 |
+
import pandas as pd
|
13 |
+
import numpy as np
|
14 |
+
import argparse
|
15 |
+
import datasets
|
16 |
+
import torch
|
17 |
+
import re
|
18 |
+
from thefuzz import process
|
19 |
+
from typing import List
|
20 |
+
from tqdm import tqdm
|
21 |
+
from transformers.trainer_utils import set_seed
|
22 |
+
|
23 |
+
from typing import Tuple, List, Union, Iterable
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from transformers import PreTrainedTokenizer
|
29 |
+
from transformers import logging
|
30 |
+
from transformers.generation import LogitsProcessor
|
31 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
32 |
+
HistoryType = List[Tuple[str, str]]
|
33 |
+
TokensType = List[int]
|
34 |
+
BatchTokensType = List[List[int]]
|
35 |
+
|
36 |
+
def make_context(
|
37 |
+
tokenizer: PreTrainedTokenizer,
|
38 |
+
query: str,
|
39 |
+
history: List[Tuple[str, str]] = None,
|
40 |
+
system: str = "",
|
41 |
+
max_window_size: int = 6144,
|
42 |
+
chat_format: str = "chatml",
|
43 |
+
):
|
44 |
+
if history is None:
|
45 |
+
history = []
|
46 |
+
|
47 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
48 |
+
im_start_tokens = [tokenizer.im_start_id]
|
49 |
+
im_end_tokens = [tokenizer.im_end_id]
|
50 |
+
nl_tokens = tokenizer.encode("\n")
|
51 |
+
|
52 |
+
def _tokenize_str(role, content):
|
53 |
+
return f"{role}\n{content}", tokenizer.encode(
|
54 |
+
role
|
55 |
+
) + nl_tokens + tokenizer.encode(content)
|
56 |
+
|
57 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
58 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
59 |
+
|
60 |
+
raw_text = ""
|
61 |
+
context_tokens = []
|
62 |
+
|
63 |
+
for turn_query, turn_response in reversed(history):
|
64 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
65 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
66 |
+
response_text, response_tokens_part = _tokenize_str(
|
67 |
+
"assistant", turn_response
|
68 |
+
)
|
69 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
70 |
+
|
71 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
72 |
+
prev_chat = (
|
73 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
74 |
+
)
|
75 |
+
|
76 |
+
current_context_size = (
|
77 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
78 |
+
)
|
79 |
+
if current_context_size < max_window_size:
|
80 |
+
context_tokens = next_context_tokens + context_tokens
|
81 |
+
raw_text = prev_chat + raw_text
|
82 |
+
else:
|
83 |
+
break
|
84 |
+
|
85 |
+
context_tokens = system_tokens + context_tokens
|
86 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
87 |
+
context_tokens += (
|
88 |
+
nl_tokens
|
89 |
+
+ im_start_tokens
|
90 |
+
+ _tokenize_str("user", query)[1]
|
91 |
+
+ im_end_tokens
|
92 |
+
+ nl_tokens
|
93 |
+
+ im_start_tokens
|
94 |
+
+ tokenizer.encode("assistant")
|
95 |
+
+ nl_tokens
|
96 |
+
)
|
97 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
98 |
+
|
99 |
+
return raw_text, context_tokens
|
100 |
+
|
101 |
+
def chat(
|
102 |
+
model,
|
103 |
+
tokenizer: PreTrainedTokenizer,
|
104 |
+
query: str,
|
105 |
+
history: Optional[HistoryType],
|
106 |
+
system: str = "You are a helpful assistant.",
|
107 |
+
append_history: bool = True
|
108 |
+
) -> Tuple[str, HistoryType]:
|
109 |
+
|
110 |
+
|
111 |
+
if history is None:
|
112 |
+
history = []
|
113 |
+
|
114 |
+
raw_text, context_tokens = make_context(
|
115 |
+
tokenizer,
|
116 |
+
query,
|
117 |
+
history=history,
|
118 |
+
system=system,
|
119 |
+
max_window_size=6144,
|
120 |
+
chat_format = "chatml",
|
121 |
+
)
|
122 |
+
|
123 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
124 |
+
input_ids = torch.tensor([context_tokens]).cuda()
|
125 |
+
outputs = model.generate(
|
126 |
+
input_ids,
|
127 |
+
# stop_words_ids = stop_words_ids,
|
128 |
+
return_dict_in_generate = False,
|
129 |
+
)
|
130 |
+
|
131 |
+
response = decode_tokens(
|
132 |
+
outputs[0],
|
133 |
+
tokenizer,
|
134 |
+
raw_text_len=len(raw_text),
|
135 |
+
context_length=len(context_tokens),
|
136 |
+
chat_format='chatml',
|
137 |
+
verbose=False,
|
138 |
+
)
|
139 |
+
|
140 |
+
if append_history:
|
141 |
+
history.append((query, response))
|
142 |
+
|
143 |
+
return response, history
|
144 |
+
|
145 |
+
def decode_tokens(
|
146 |
+
tokens: Union[torch.LongTensor, TokensType],
|
147 |
+
tokenizer: PreTrainedTokenizer,
|
148 |
+
raw_text_len: int,
|
149 |
+
context_length: int,
|
150 |
+
chat_format: str = "chatml",
|
151 |
+
verbose: bool = False,
|
152 |
+
return_end_reason: bool = False,
|
153 |
+
) -> str:
|
154 |
+
if torch.is_tensor(tokens):
|
155 |
+
tokens = tokens.cpu().numpy().tolist()
|
156 |
+
|
157 |
+
|
158 |
+
return _decode_chatml(
|
159 |
+
tokens,
|
160 |
+
stop_words=[],
|
161 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
raw_text_len=raw_text_len,
|
164 |
+
context_length=context_length,
|
165 |
+
verbose=verbose,
|
166 |
+
return_end_reason=return_end_reason,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def _decode_chatml(
|
171 |
+
tokens: List[int],
|
172 |
+
*,
|
173 |
+
stop_words: List[str],
|
174 |
+
eod_token_ids: List[int],
|
175 |
+
tokenizer: PreTrainedTokenizer,
|
176 |
+
raw_text_len: int,
|
177 |
+
context_length: int,
|
178 |
+
verbose: bool = False,
|
179 |
+
return_end_reason: bool = False,
|
180 |
+
chat_format = "chatml",
|
181 |
+
):
|
182 |
+
end_reason = f"Gen length {len(tokens)}"
|
183 |
+
eod_token_idx = context_length
|
184 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
185 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
186 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
187 |
+
break
|
188 |
+
|
189 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
190 |
+
if verbose:
|
191 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
192 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
193 |
+
print("\nEnd Reason:", end_reason)
|
194 |
+
for stop_word in stop_words:
|
195 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
196 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
197 |
+
if verbose:
|
198 |
+
print("\nGenerate:", trim_decode_tokens)
|
199 |
+
|
200 |
+
if return_end_reason:
|
201 |
+
return trim_decode_tokens, end_reason
|
202 |
+
else:
|
203 |
+
return trim_decode_tokens
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
def load_models_tokenizer(args):
|
208 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
209 |
+
from transformers.generation import GenerationConfig
|
210 |
+
|
211 |
+
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
212 |
+
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
|
213 |
+
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
214 |
+
model.generation_config.do_sample = False # use greedy decoding
|
215 |
+
return model, tokenizer
|
216 |
+
|
217 |
+
'''
|
218 |
+
python eval/evaluate_chat_gsm8k.py [--use-fewshot]
|
219 |
+
'''
|
220 |
+
|
221 |
+
INVALID_ANS = "[invalid]"
|
222 |
+
DEVICE = "cuda:0"
|
223 |
+
|
224 |
+
def doc_to_text(doc, use_fewshot):
|
225 |
+
if use_fewshot:
|
226 |
+
context = (
|
227 |
+
"Question: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next week. They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?\nLet's think step by step\n"
|
228 |
+
"Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours total.\nFor the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets = 6 hours total.\nAngelo and Melanie need to start with planning 12 hours to study, at 4 hours a day, 12 / 4 = 3 days.\nHowever, they need to include time for breaks and lunch. Every hour they want to include a 10-minute break, so 12 total hours x 10 minutes = 120 extra minutes for breaks.\nThey also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes.\nAnd they want to include 30 minutes for lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours.\nSo Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total.\nThey want to study no more than 4 hours each day, 15 hours / 4 hours each day = 3.75\nThey will need to plan to study 4 days to allow for all the time they need.\nThe answer is 4\n\n"
|
229 |
+
"Question: Mark's basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What's the total number of points scored by both teams added together?\nLet's think step by step\n"
|
230 |
+
"Mark's team scores 25 2 pointers, meaning they scored 25*2= 50 points in 2 pointers.\nHis team also scores 6 3 pointers, meaning they scored 8*3= 24 points in 3 pointers\nThey scored 10 free throws, and free throws count as one point so they scored 10*1=10 points in free throws.\nAll together his team scored 50+24+10= 84 points\nMark's opponents scored double his team's number of 2 pointers, meaning they scored 50*2=100 points in 2 pointers.\nHis opponents scored half his team's number of 3 pointers, meaning they scored 24/2= 12 points in 3 pointers.\nThey also scored half Mark's team's points in free throws, meaning they scored 10/2=5 points in free throws.\nAll together Mark's opponents scored 100+12+5=117 points\nThe total score for the game is both team's scores added together, so it is 84+117=201 points\nThe answer is 201\n\n"
|
231 |
+
"Question: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?\nLet's think step by step\n"
|
232 |
+
"When Bella buys 2/5 times more marbles, she'll have increased the number of marbles by 2/5*60 = 24\nThe total number of marbles she'll have is 60+24 = 84\nIf Bella currently has 60 marbles, and she has two times as many marbles as frisbees, she has 60/2 = 30 frisbees.\nIf Bella buys 2/5 times more frisbees, she'll have 2/5*30 = 12 more frisbees.\nThe total number of frisbees she'll have will increase to 30+12 = 42\nBella also has 20 more frisbees than deck cards, meaning she has 30-20 = 10 deck cards\nIf she buys 2/5 times more deck cards, she'll have 2/5*10 = 4 more deck cards.\nThe total number of deck cards she'll have is 10+4 = 14\nTogether, Bella will have a total of 14+42+84 = 140 items\nThe answer is 140\n\n"
|
233 |
+
"Question: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?\nLet's think step by step\n"
|
234 |
+
"For the first three baskets, the number of apples and oranges in one basket is 9+15=24\nIn total, together with bananas, the number of fruits in one basket is 24+14=38 for the first three baskets.\nSince there are three baskets each having 38 fruits, there are 3*38=114 fruits in the first three baskets.\nThe number of apples in the fourth basket is 9-2=7\nThere are also 15-2=13 oranges in the fourth basket\nThe combined number of oranges and apples in the fourth basket is 13+7=20\nThe fourth basket also contains 14-2=12 bananas.\nIn total, the fourth basket has 20+12=32 fruits.\nThe four baskets together have 32+114=146 fruits.\nThe answer is 146\n\n"
|
235 |
+
f"Question: {doc['question']}\nLet's think step by step"
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
context = doc["question"]
|
239 |
+
return context
|
240 |
+
|
241 |
+
|
242 |
+
def decode(tokens_list, tokenizer, raw_text_len):
|
243 |
+
sents = []
|
244 |
+
for tokens in tokens_list:
|
245 |
+
tokens = tokens.cpu().numpy().tolist()
|
246 |
+
sent = tokenizer.tokenizer.decode(tokens[raw_text_len:])
|
247 |
+
sent = sent.split("<|endoftext|>")[0]
|
248 |
+
sent = sent.split("\n\n\n")[0]
|
249 |
+
sent = sent.split("\n\n")[0]
|
250 |
+
sent = sent.split("Question:")[0]
|
251 |
+
sents.append(sent)
|
252 |
+
return sents
|
253 |
+
|
254 |
+
|
255 |
+
def generate_sample(model, tokenizer, question):
|
256 |
+
response, _ = chat(
|
257 |
+
model,
|
258 |
+
tokenizer,
|
259 |
+
question,
|
260 |
+
history=None,
|
261 |
+
)
|
262 |
+
print(question)
|
263 |
+
print("-------------")
|
264 |
+
print(response)
|
265 |
+
print("=============")
|
266 |
+
return response
|
267 |
+
|
268 |
+
|
269 |
+
def extract_answer_hf(completion):
|
270 |
+
def _get_last_digit(s):
|
271 |
+
_PAT_LAST_DIGIT = re.compile(
|
272 |
+
r"(?<=(\s|[\$%#{]))([+-])?(?=(\S))(0|([1-9](\d*|\d{0,2}(,\d{3})*)))?(\.\d*[1-9])?(?=(\s|[.,}]|$))"
|
273 |
+
)
|
274 |
+
match = list(_PAT_LAST_DIGIT.finditer(s))
|
275 |
+
if match:
|
276 |
+
last_digit = match[-1].group().replace(",", "").replace("+", "")
|
277 |
+
# print(f"The last digit in {s} is {last_digit}")
|
278 |
+
else:
|
279 |
+
last_digit = None
|
280 |
+
print(f"No digits found in {s!r}")
|
281 |
+
return last_digit
|
282 |
+
|
283 |
+
job_gen = completion.strip(".").replace("\n", "\\n")
|
284 |
+
last_digit = _get_last_digit(job_gen)
|
285 |
+
if last_digit is not None:
|
286 |
+
return eval(last_digit)
|
287 |
+
return INVALID_ANS
|
288 |
+
|
289 |
+
|
290 |
+
def extract_answer(completion):
|
291 |
+
try:
|
292 |
+
last_number = re.findall(r"\d+", completion)[-1]
|
293 |
+
return eval(last_number)
|
294 |
+
except:
|
295 |
+
return INVALID_ANS
|
296 |
+
|
297 |
+
|
298 |
+
def is_correct(completion, answer):
|
299 |
+
gold = extract_answer(answer)
|
300 |
+
assert gold != INVALID_ANS, "No ground truth answer found in the document."
|
301 |
+
return extract_answer(completion) == gold
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
306 |
+
parser.add_argument(
|
307 |
+
"-c",
|
308 |
+
"--checkpoint-path",
|
309 |
+
type=Path,
|
310 |
+
help="Checkpoint path",
|
311 |
+
default="Qwen/Qwen-7B-Chat",
|
312 |
+
)
|
313 |
+
parser.add_argument("-f", "--sample-input-file", type=str, default=None)
|
314 |
+
parser.add_argument(
|
315 |
+
"-o", "--sample-output-file", type=str, default="gsm8k_res.jsonl"
|
316 |
+
)
|
317 |
+
parser.add_argument("--use-fewshot", action="store_true")
|
318 |
+
|
319 |
+
args = parser.parse_args()
|
320 |
+
|
321 |
+
if args.sample_input_file is not None:
|
322 |
+
dataset = load_from_disk(args.sample_input_file) # or:
|
323 |
+
else:
|
324 |
+
dataset = load_dataset("gsm8k", "main")
|
325 |
+
|
326 |
+
print("Loading tokenizer ...")
|
327 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
328 |
+
args.checkpoint_path, trust_remote_code=True, bf16=True, use_flash_attn=True
|
329 |
+
)
|
330 |
+
|
331 |
+
print("Loading model ...")
|
332 |
+
model = AutoModelForCausalLM.from_pretrained(
|
333 |
+
args.checkpoint_path, device_map="auto", trust_remote_code=True
|
334 |
+
).eval()
|
335 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
336 |
+
args.checkpoint_path, trust_remote_code=True
|
337 |
+
)
|
338 |
+
model.generation_config.do_sample = False # use greedy decoding
|
339 |
+
|
340 |
+
test = dataset["test"]
|
341 |
+
|
342 |
+
f_output = open(args.sample_output_file, "w", encoding="utf-8")
|
343 |
+
tot_length = test.num_rows
|
344 |
+
acc_res = []
|
345 |
+
for doc in tqdm(test):
|
346 |
+
context = doc_to_text(doc, args.use_fewshot)
|
347 |
+
print(context)
|
348 |
+
completion = generate_sample(model, tokenizer, context)
|
349 |
+
answer = doc["answer"]
|
350 |
+
acc = is_correct(completion, answer)
|
351 |
+
doc["completion"] = completion
|
352 |
+
doc["acc"] = acc
|
353 |
+
f_output.write(json.dumps(doc, ensure_ascii=False) + "\n")
|
354 |
+
f_output.flush()
|
355 |
+
acc_res.append(acc)
|
356 |
+
|
357 |
+
f_output.close()
|
358 |
+
print("4-shot Acc: " if args.use_fewshot else "Zero-shot Acc", np.mean(acc_res))
|
eval/evaluate_chatml_mmlu.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
import datasets
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
from thefuzz import process
|
9 |
+
from typing import List
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers.trainer_utils import set_seed
|
12 |
+
|
13 |
+
from typing import Tuple, List, Union, Iterable
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from transformers import PreTrainedTokenizer
|
19 |
+
from transformers import logging
|
20 |
+
from transformers.generation import LogitsProcessor
|
21 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
22 |
+
HistoryType = List[Tuple[str, str]]
|
23 |
+
TokensType = List[int]
|
24 |
+
BatchTokensType = List[List[int]]
|
25 |
+
|
26 |
+
def make_context(
|
27 |
+
tokenizer: PreTrainedTokenizer,
|
28 |
+
query: str,
|
29 |
+
history: List[Tuple[str, str]] = None,
|
30 |
+
system: str = "",
|
31 |
+
max_window_size: int = 6144,
|
32 |
+
chat_format: str = "chatml",
|
33 |
+
):
|
34 |
+
if history is None:
|
35 |
+
history = []
|
36 |
+
|
37 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
38 |
+
im_start_tokens = [tokenizer.im_start_id]
|
39 |
+
im_end_tokens = [tokenizer.im_end_id]
|
40 |
+
nl_tokens = tokenizer.encode("\n")
|
41 |
+
|
42 |
+
def _tokenize_str(role, content):
|
43 |
+
return f"{role}\n{content}", tokenizer.encode(
|
44 |
+
role
|
45 |
+
) + nl_tokens + tokenizer.encode(content)
|
46 |
+
|
47 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
48 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
49 |
+
|
50 |
+
raw_text = ""
|
51 |
+
context_tokens = []
|
52 |
+
|
53 |
+
for turn_query, turn_response in reversed(history):
|
54 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
55 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
56 |
+
response_text, response_tokens_part = _tokenize_str(
|
57 |
+
"assistant", turn_response
|
58 |
+
)
|
59 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
60 |
+
|
61 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
62 |
+
prev_chat = (
|
63 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
64 |
+
)
|
65 |
+
|
66 |
+
current_context_size = (
|
67 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
68 |
+
)
|
69 |
+
if current_context_size < max_window_size:
|
70 |
+
context_tokens = next_context_tokens + context_tokens
|
71 |
+
raw_text = prev_chat + raw_text
|
72 |
+
else:
|
73 |
+
break
|
74 |
+
|
75 |
+
context_tokens = system_tokens + context_tokens
|
76 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
77 |
+
context_tokens += (
|
78 |
+
nl_tokens
|
79 |
+
+ im_start_tokens
|
80 |
+
+ _tokenize_str("user", query)[1]
|
81 |
+
+ im_end_tokens
|
82 |
+
+ nl_tokens
|
83 |
+
+ im_start_tokens
|
84 |
+
+ tokenizer.encode("assistant")
|
85 |
+
+ nl_tokens
|
86 |
+
)
|
87 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
88 |
+
|
89 |
+
return raw_text, context_tokens
|
90 |
+
|
91 |
+
def chat(
|
92 |
+
model,
|
93 |
+
tokenizer: PreTrainedTokenizer,
|
94 |
+
query: str,
|
95 |
+
history: Optional[HistoryType],
|
96 |
+
system: str = "You are a helpful assistant.",
|
97 |
+
append_history: bool = True
|
98 |
+
) -> Tuple[str, HistoryType]:
|
99 |
+
|
100 |
+
|
101 |
+
if history is None:
|
102 |
+
history = []
|
103 |
+
|
104 |
+
raw_text, context_tokens = make_context(
|
105 |
+
tokenizer,
|
106 |
+
query,
|
107 |
+
history=history,
|
108 |
+
system=system,
|
109 |
+
max_window_size=6144,
|
110 |
+
chat_format = "chatml",
|
111 |
+
)
|
112 |
+
|
113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
+
input_ids = torch.tensor([context_tokens]).cuda()
|
115 |
+
outputs = model.generate(
|
116 |
+
input_ids,
|
117 |
+
# stop_words_ids = stop_words_ids,
|
118 |
+
return_dict_in_generate = False,
|
119 |
+
)
|
120 |
+
|
121 |
+
response = decode_tokens(
|
122 |
+
outputs[0],
|
123 |
+
tokenizer,
|
124 |
+
raw_text_len=len(raw_text),
|
125 |
+
context_length=len(context_tokens),
|
126 |
+
chat_format='chatml',
|
127 |
+
verbose=False,
|
128 |
+
)
|
129 |
+
|
130 |
+
if append_history:
|
131 |
+
history.append((query, response))
|
132 |
+
|
133 |
+
return response, history
|
134 |
+
|
135 |
+
def decode_tokens(
|
136 |
+
tokens: Union[torch.LongTensor, TokensType],
|
137 |
+
tokenizer: PreTrainedTokenizer,
|
138 |
+
raw_text_len: int,
|
139 |
+
context_length: int,
|
140 |
+
chat_format: str = "chatml",
|
141 |
+
verbose: bool = False,
|
142 |
+
return_end_reason: bool = False,
|
143 |
+
) -> str:
|
144 |
+
if torch.is_tensor(tokens):
|
145 |
+
tokens = tokens.cpu().numpy().tolist()
|
146 |
+
|
147 |
+
|
148 |
+
return _decode_chatml(
|
149 |
+
tokens,
|
150 |
+
stop_words=[],
|
151 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
152 |
+
tokenizer=tokenizer,
|
153 |
+
raw_text_len=raw_text_len,
|
154 |
+
context_length=context_length,
|
155 |
+
verbose=verbose,
|
156 |
+
return_end_reason=return_end_reason,
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
def _decode_chatml(
|
161 |
+
tokens: List[int],
|
162 |
+
*,
|
163 |
+
stop_words: List[str],
|
164 |
+
eod_token_ids: List[int],
|
165 |
+
tokenizer: PreTrainedTokenizer,
|
166 |
+
raw_text_len: int,
|
167 |
+
context_length: int,
|
168 |
+
verbose: bool = False,
|
169 |
+
return_end_reason: bool = False,
|
170 |
+
chat_format = "chatml",
|
171 |
+
):
|
172 |
+
end_reason = f"Gen length {len(tokens)}"
|
173 |
+
eod_token_idx = context_length
|
174 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
175 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
176 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
177 |
+
break
|
178 |
+
|
179 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
180 |
+
if verbose:
|
181 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
182 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
183 |
+
print("\nEnd Reason:", end_reason)
|
184 |
+
for stop_word in stop_words:
|
185 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
186 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
187 |
+
if verbose:
|
188 |
+
print("\nGenerate:", trim_decode_tokens)
|
189 |
+
|
190 |
+
if return_end_reason:
|
191 |
+
return trim_decode_tokens, end_reason
|
192 |
+
else:
|
193 |
+
return trim_decode_tokens
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
def load_models_tokenizer(args):
|
198 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
199 |
+
from transformers.generation import GenerationConfig
|
200 |
+
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
202 |
+
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
|
203 |
+
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
204 |
+
model.generation_config.do_sample = False # use greedy decoding
|
205 |
+
return model, tokenizer
|
206 |
+
|
207 |
+
|
208 |
+
def format_example(line):
|
209 |
+
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
|
210 |
+
for choice in choices:
|
211 |
+
example += f'{choice}. {line[f"{choice}"]}\n'
|
212 |
+
return example
|
213 |
+
|
214 |
+
|
215 |
+
def process_before_extraction(gen, choice_dict):
|
216 |
+
# replace the choice by letter in the generated sentence
|
217 |
+
# from longest one to shortest one
|
218 |
+
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
219 |
+
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
|
220 |
+
gen = pattern.sub(key, gen)
|
221 |
+
return gen
|
222 |
+
|
223 |
+
def extract_choice(gen, choice_list):
|
224 |
+
# answer is A | choice is A | choose A
|
225 |
+
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)
|
226 |
+
|
227 |
+
# A is correct | A is right
|
228 |
+
if res is None:
|
229 |
+
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)
|
230 |
+
|
231 |
+
# straight answer: A
|
232 |
+
if res is None:
|
233 |
+
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
|
234 |
+
|
235 |
+
# simply extract the first appearred letter
|
236 |
+
if res is None:
|
237 |
+
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
238 |
+
|
239 |
+
if res is None:
|
240 |
+
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
241 |
+
else:
|
242 |
+
return res.group(1)
|
243 |
+
|
244 |
+
def extract_answer(response, row):
|
245 |
+
gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
|
246 |
+
pred = extract_choice(gen, [row[choice] for choice in choices])
|
247 |
+
return pred
|
248 |
+
|
249 |
+
@torch.no_grad()
|
250 |
+
def eval_subject(
|
251 |
+
model,
|
252 |
+
tokenizer,
|
253 |
+
subject_name,
|
254 |
+
test_df,
|
255 |
+
save_result_dir=None,
|
256 |
+
overwrite=False,
|
257 |
+
**kwargs
|
258 |
+
):
|
259 |
+
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
|
260 |
+
if not overwrite and os.path.exists(result_path):
|
261 |
+
print(f"{result_path} existed, skip!")
|
262 |
+
score = []
|
263 |
+
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
|
264 |
+
# pred = extract_answer(resultrow['model_response'], datarow)
|
265 |
+
pred = resultrow['model_output']
|
266 |
+
correct = 1 if pred == datarow['answer'] else 0
|
267 |
+
score.append(correct)
|
268 |
+
return score
|
269 |
+
|
270 |
+
result = []
|
271 |
+
score = []
|
272 |
+
|
273 |
+
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
274 |
+
question = format_example(row)
|
275 |
+
|
276 |
+
response, history = chat(
|
277 |
+
model,
|
278 |
+
tokenizer,
|
279 |
+
question,
|
280 |
+
history=None,
|
281 |
+
)
|
282 |
+
print(question)
|
283 |
+
print(response)
|
284 |
+
pred = extract_answer(response, row)
|
285 |
+
print(pred)
|
286 |
+
print("======================")
|
287 |
+
|
288 |
+
if 'answer' in row:
|
289 |
+
correct = 1 if pred == row['answer'] else 0
|
290 |
+
score.append(correct)
|
291 |
+
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
|
292 |
+
result.append(pred)
|
293 |
+
|
294 |
+
if save_result_dir:
|
295 |
+
test_df['model_output'] = result
|
296 |
+
test_df['model_response'] = response
|
297 |
+
if score:
|
298 |
+
test_df["correctness"] = score
|
299 |
+
os.makedirs(save_result_dir, exist_ok=True)
|
300 |
+
test_df.to_csv(os.path.join(
|
301 |
+
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
|
302 |
+
|
303 |
+
return score
|
304 |
+
|
305 |
+
|
306 |
+
def cal_mmlu(res):
|
307 |
+
acc_sum_dict = dict()
|
308 |
+
acc_norm_sum_dict = dict()
|
309 |
+
cnt_dict = dict()
|
310 |
+
acc_sum = 0.
|
311 |
+
cnt = 0
|
312 |
+
hard_cnt = 0
|
313 |
+
hard_acc_sum = 0.
|
314 |
+
|
315 |
+
for class_ in TASK_NAME_MAPPING.keys():
|
316 |
+
acc_sum_dict[class_] = 0.
|
317 |
+
acc_norm_sum_dict[class_] = 0.
|
318 |
+
cnt_dict[class_] = 0.
|
319 |
+
|
320 |
+
for tt in TASK_NAME_MAPPING[class_]:
|
321 |
+
acc_sum += sum(res[tt])
|
322 |
+
cnt += len(res[tt])
|
323 |
+
|
324 |
+
acc_sum_dict[class_] += sum(res[tt])
|
325 |
+
cnt_dict[class_] += len(res[tt])
|
326 |
+
|
327 |
+
print('\n\n\n')
|
328 |
+
for k in TASK_NAME_MAPPING.keys():
|
329 |
+
if k in cnt_dict:
|
330 |
+
print('%s ACC: %.2f ' % (
|
331 |
+
k, acc_sum_dict[k] * 100 / cnt_dict[k]))
|
332 |
+
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
|
333 |
+
|
334 |
+
|
335 |
+
def main(args):
|
336 |
+
print("loading model weights")
|
337 |
+
if args.checkpoint_path is not None:
|
338 |
+
model, tokenizer = load_models_tokenizer(args)
|
339 |
+
else:
|
340 |
+
model, tokenizer = None, None
|
341 |
+
print("model loaded")
|
342 |
+
|
343 |
+
dev_result = {}
|
344 |
+
for subject_name in tqdm(SUBJECTS):
|
345 |
+
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
346 |
+
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
347 |
+
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
|
348 |
+
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
349 |
+
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
|
350 |
+
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
|
351 |
+
|
352 |
+
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
|
353 |
+
dev_result[subject_name] = score
|
354 |
+
cal_mmlu(dev_result)
|
355 |
+
|
356 |
+
|
357 |
+
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
|
358 |
+
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
|
359 |
+
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
|
360 |
+
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
|
361 |
+
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
362 |
+
choices = ["A", "B", "C", "D"]
|
363 |
+
|
364 |
+
if __name__ == '__main__':
|
365 |
+
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
366 |
+
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
|
367 |
+
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
|
368 |
+
|
369 |
+
"""Provide extra arguments required for tasks."""
|
370 |
+
group = parser.add_argument_group(title='Evaluation options')
|
371 |
+
group.add_argument('-d', '--eval_data_path', type=str,
|
372 |
+
help='Path to eval data')
|
373 |
+
group.add_argument("--debug", action='store_true', default=False,
|
374 |
+
help='Print infos.')
|
375 |
+
group.add_argument("--overwrite", action='store_true', default=False,
|
376 |
+
help='Overwrite existed results')
|
377 |
+
|
378 |
+
args = parser.parse_args()
|
379 |
+
set_seed(args.seed)
|
380 |
+
|
381 |
+
main(args)
|