|
--- |
|
license: apache-2.0 |
|
tags: |
|
- multilingual model |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-multilingual-xlsum-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-multilingual-xlsum-new |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7673 |
|
- Rouge1: 9.1368 |
|
- Rouge2: 2.3893 |
|
- Rougel: 7.6599 |
|
- Rougelsum: 7.6873 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 3.7827 | 1.0 | 1687 | 2.8911 | 8.1314 | 1.9569 | 6.7927 | 6.8179 | |
|
| 3.6518 | 2.0 | 3374 | 2.8338 | 8.6621 | 2.1437 | 7.2171 | 7.246 | |
|
| 3.3691 | 3.0 | 5061 | 2.8015 | 8.9402 | 2.2733 | 7.4744 | 7.497 | |
|
| 3.4435 | 4.0 | 6748 | 2.7746 | 9.0514 | 2.3627 | 7.6144 | 7.6358 | |
|
| 3.5139 | 5.0 | 8435 | 2.7673 | 9.1368 | 2.3893 | 7.6599 | 7.6873 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|