|
import os |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' |
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
|
|
import tensorflow as tf |
|
tf.config.set_visible_devices([], 'GPU') |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from tensorflow.keras.preprocessing import image |
|
from tensorflow.keras.models import model_from_json |
|
from PIL import Image |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
from description import description |
|
from location import location |
|
|
|
def load_model_from_file(json_path, h5_path): |
|
with open(json_path, "r") as f: |
|
json_config = f.read() |
|
model = model_from_json(json_config) |
|
model.load_weights(h5_path) |
|
return model |
|
|
|
|
|
model_json_path = hf_hub_download(repo_id="CapstoneML/Model", filename="model.json") |
|
model_weights_path = hf_hub_download(repo_id="CapstoneML/Model", filename="my_model.h5") |
|
|
|
model = load_model_from_file(model_json_path, model_weights_path) |
|
|
|
labels = [ |
|
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", |
|
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", |
|
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" |
|
] |
|
|
|
def classify_image(img): |
|
try: |
|
img = img.resize((224, 224)) |
|
img_array = image.img_to_array(img) |
|
img_array = np.expand_dims(img_array, axis=0) |
|
img_array = img_array / 255.0 |
|
|
|
pred = model.predict(img_array)[0] |
|
confidence = np.max(pred) |
|
predicted_label = labels[np.argmax(pred)] |
|
|
|
akurasi = float(confidence) |
|
if confidence < 0.8: |
|
label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) |
|
deskripsi = ( |
|
"Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " |
|
"Pastikan anda berada di salah satu tempat seperti:\n" |
|
"- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" |
|
"- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" |
|
"- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" |
|
"- Taman Sari\n- Tugu Yogyakarta" |
|
) |
|
lokasi = "-" |
|
else: |
|
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" |
|
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") |
|
lokasi = location.get(predicted_label, None) |
|
if lokasi: |
|
lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>' |
|
else: |
|
lokasi = "Lokasi tidak ditemukan" |
|
|
|
return label_output, deskripsi, lokasi, akurasi |
|
|
|
except Exception as e: |
|
return "Error", str(e), "-" |
|
|
|
interface = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.Image(type="pil", label="Upload Gambar"), |
|
outputs=[ |
|
gr.Textbox(label="Output Klasifikasi"), |
|
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), |
|
gr.HTML(label="Link Lokasi"), |
|
], |
|
title="Klasifikasi Gambar", |
|
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." |
|
) |
|
|
|
interface.launch() |
|
|