perlthoughts
commited on
Commit
•
2aefc63
1
Parent(s):
503e91e
Upload folder using huggingface_hub
Browse files- README.md +147 -0
- benchmark_hf_model.py +138 -0
- config.json +30 -0
- configuration_decilm.py +22 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- modeling_decilm.py +317 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +41 -0
- transformers_v4_35_2__configuration_llama.py +187 -0
- transformers_v4_35_2__modeling_attn_mask_utils.py +247 -0
- transformers_v4_35_2__modeling_llama.py +1248 -0
- version_check.py +11 -0
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- Open-Orca/SlimOrca
|
7 |
+
---
|
8 |
+
# DeciLM-7B-instruct
|
9 |
+
|
10 |
+
DeciLM-7B-instruct is a model for short-form instruction following. It is built by LoRA fine-tuning on the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca).
|
11 |
+
|
12 |
+
### 🔥 Click [here](https://console.deci.ai/infery-llm-demo) for a live demo of DeciLM-7B + Infery!
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
DeciLM-7B-instruct is a derivative of the recently released [DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B) language model, a pre-trained, high-efficiency generative text model with 7 billion parameters. DeciLM-7B-instruct is one the best 7B instruct models obtained using simple LoRA fine-tuning, without relying on preference optimization techniques such as RLHF and DPO.
|
19 |
+
|
20 |
+
- **Developed by:** [Deci](https://deci.ai)
|
21 |
+
- **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention.
|
22 |
+
- **Language(s) (NLP):** English
|
23 |
+
- **License:** Apache 2.0
|
24 |
+
|
25 |
+
## Model Architecture
|
26 |
+
|
27 |
+
| Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* |
|
28 |
+
|:----------|:----------|:----------|:----------|:----------|
|
29 |
+
| 7.04 billion | 32 | 32 | 8192 | Variable |
|
30 |
+
|
31 |
+
*AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each model layer.
|
32 |
+
|
33 |
+
|
34 |
+
### Model Sources
|
35 |
+
|
36 |
+
- **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date)
|
37 |
+
- **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct)
|
38 |
+
- **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing)
|
39 |
+
- **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct)
|
40 |
+
|
41 |
+
### Prompt Template
|
42 |
+
```
|
43 |
+
### System:
|
44 |
+
{system_prompt}
|
45 |
+
### User:
|
46 |
+
{user_prompt}
|
47 |
+
### Assistant:
|
48 |
+
```
|
49 |
+
|
50 |
+
## Uses
|
51 |
+
|
52 |
+
The model is intended for commercial and research use in English.
|
53 |
+
|
54 |
+
## How to Get Started with the Model
|
55 |
+
|
56 |
+
Use the code below to get started with the model.
|
57 |
+
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
61 |
+
|
62 |
+
model_name = "Deci/DeciLM-7B-instruct"
|
63 |
+
|
64 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
65 |
+
|
66 |
+
quantize = False # Optional. Useful for GPUs with less than 24GB memory
|
67 |
+
|
68 |
+
if quantize:
|
69 |
+
dtype_kwargs = dict(quantization_config=BitsAndBytesConfig(
|
70 |
+
load_in_4bit=True,
|
71 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
72 |
+
))
|
73 |
+
else:
|
74 |
+
dtype_kwargs = dict(torch_dtype="auto")
|
75 |
+
|
76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
77 |
+
model_name,
|
78 |
+
device_map="auto",
|
79 |
+
trust_remote_code=True,
|
80 |
+
**dtype_kwargs
|
81 |
+
)
|
82 |
+
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
+
tokenizer.pad_token = tokenizer.eos_token
|
85 |
+
|
86 |
+
deci_generator = pipeline("text-generation",
|
87 |
+
model=model,
|
88 |
+
tokenizer=tokenizer,
|
89 |
+
temperature=0.1,
|
90 |
+
device_map="auto",
|
91 |
+
max_length=4096,
|
92 |
+
return_full_text=False)
|
93 |
+
|
94 |
+
system_prompt = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
|
95 |
+
|
96 |
+
user_prompt = "How do I make the most delicious pancakes the world has ever tasted?"
|
97 |
+
|
98 |
+
prompt = tokenizer.apply_chat_template([
|
99 |
+
{"role": "system", "content": system_prompt},
|
100 |
+
{"role": "user", "content": user_prompt},
|
101 |
+
], tokenize=False, add_generation_prompt=True)
|
102 |
+
|
103 |
+
response = deci_generator(prompt)[0]['generated_text']
|
104 |
+
print(prompt + response)
|
105 |
+
```
|
106 |
+
|
107 |
+
## Evaluation
|
108 |
+
|
109 |
+
Below are DeciLM-7B and DeciLM-7B-instruct's evaluation results.
|
110 |
+
|
111 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|
112 |
+
|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
113 |
+
| DecilLM-7B | 61.55 | 59.39 | 82.51 | 59.76 | 40.33 | 79.95 | 47.38 |
|
114 |
+
| DecilLM-7B-instruct | 63.19 | 61.01 | 82.37 | 60.24 | 49.75 | 79.72 | 46.02 |
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
### Runtime Benchmarks
|
119 |
+
|
120 |
+
| Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts |
|
121 |
+
|:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|
|
122 |
+
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** | 352 | 352 |
|
123 |
+
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 |
|
124 |
+
| Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559** | 1024 | 4096 |
|
125 |
+
| Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 |
|
126 |
+
| Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 |
|
127 |
+
| Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 |
|
128 |
+
|
129 |
+
- In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py).
|
130 |
+
- Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To witness the full capabilities of Infery-LLM first-hand, we invite you to engage with our [interactive demo](https://console.deci.ai/infery-llm-demo).
|
131 |
+
|
132 |
+
## Ethical Considerations and Limitations
|
133 |
+
|
134 |
+
DeciLM-7B-instruct is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment.
|
135 |
+
|
136 |
+
## How to Cite
|
137 |
+
|
138 |
+
Please cite this model using this format.
|
139 |
+
|
140 |
+
```bibtex
|
141 |
+
@misc{DeciFoundationModels,
|
142 |
+
title = {DeciLM-7B-instruct},
|
143 |
+
author = {DeciAI Research Team},
|
144 |
+
year = {2023}
|
145 |
+
url={https://huggingface.co/Deci/DeciLM-7B-instruct},
|
146 |
+
}
|
147 |
+
```
|
benchmark_hf_model.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
from transformers import AutoModelForCausalLM, BatchEncoding
|
8 |
+
|
9 |
+
"""
|
10 |
+
Usage examples (with the best batch sizes on A100-80GB-400W)
|
11 |
+
============================================================
|
12 |
+
python -m benchmark_hf_model --model_name_or_path="Deci/DeciLM-7B" --batch_size=352
|
13 |
+
python -m benchmark_hf_model --model_name_or_path="mistralai/Mistral-7B-v0.1" --batch_size=192 --model_kwargs_json='{"use_flash_attention_2": true}'
|
14 |
+
python -m benchmark_hf_model --model_name_or_path="meta-llama/Llama-2-7b-hf" --batch_size=48 --model_kwargs_json='{"use_flash_attention_2": true}'
|
15 |
+
"""
|
16 |
+
|
17 |
+
|
18 |
+
def parse_args():
|
19 |
+
parser = ArgumentParser()
|
20 |
+
|
21 |
+
parser.add_argument(
|
22 |
+
"--model_name_or_path",
|
23 |
+
type=str,
|
24 |
+
required=True,
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--warmup_iters",
|
28 |
+
type=int,
|
29 |
+
default=10,
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--iterations",
|
33 |
+
type=int,
|
34 |
+
default=5,
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--batch_size",
|
38 |
+
type=int,
|
39 |
+
default=32,
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--prompt_length",
|
43 |
+
type=int,
|
44 |
+
default=512,
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--max_new_tokens",
|
48 |
+
type=int,
|
49 |
+
default=512,
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--precision",
|
53 |
+
type=str,
|
54 |
+
default="bf16",
|
55 |
+
help="Model precision, from: fp32, fp16 or bf16",
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--model_kwargs_json",
|
59 |
+
type=str,
|
60 |
+
default=None,
|
61 |
+
)
|
62 |
+
return parser.parse_args()
|
63 |
+
|
64 |
+
|
65 |
+
def main():
|
66 |
+
args = parse_args()
|
67 |
+
transformers.logging.set_verbosity_error()
|
68 |
+
datasets.logging.set_verbosity_error()
|
69 |
+
|
70 |
+
dict_precisions = {
|
71 |
+
"fp32": torch.float32,
|
72 |
+
"fp16": torch.float16,
|
73 |
+
"bf16": torch.bfloat16,
|
74 |
+
}
|
75 |
+
if args.precision not in dict_precisions:
|
76 |
+
raise ValueError(
|
77 |
+
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
|
78 |
+
)
|
79 |
+
dtype = dict_precisions[args.precision]
|
80 |
+
|
81 |
+
model_kwargs = {}
|
82 |
+
if args.model_kwargs_json is not None:
|
83 |
+
model_kwargs = json.loads(args.model_kwargs_json)
|
84 |
+
|
85 |
+
print(f"loading model...")
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True,
|
87 |
+
torch_dtype=dtype, **model_kwargs)
|
88 |
+
try:
|
89 |
+
print(model.model.layers[0].self_attn)
|
90 |
+
except:
|
91 |
+
print("couldn't print the model's attention module")
|
92 |
+
|
93 |
+
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
|
94 |
+
model.cuda()
|
95 |
+
model.eval()
|
96 |
+
|
97 |
+
prompt = torch.ones(args.prompt_length, dtype=torch.long)
|
98 |
+
inputs = BatchEncoding({"input_ids": prompt.repeat(args.batch_size, 1)})
|
99 |
+
inputs = inputs.to(model.device)
|
100 |
+
|
101 |
+
# warmup
|
102 |
+
print(f"warming up for {args.warmup_iters} iterations...")
|
103 |
+
for _ in range(args.warmup_iters):
|
104 |
+
with torch.no_grad():
|
105 |
+
_ = model.generate(
|
106 |
+
**inputs,
|
107 |
+
max_new_tokens=1,
|
108 |
+
do_sample=False,
|
109 |
+
eos_token_id=-1234,
|
110 |
+
)
|
111 |
+
print('finished warmup')
|
112 |
+
torch.cuda.synchronize()
|
113 |
+
|
114 |
+
print(
|
115 |
+
f"prefill ({args.prompt_length} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}) + generation ({args.max_new_tokens} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}):")
|
116 |
+
tokens_generated = args.max_new_tokens * args.batch_size
|
117 |
+
prefill_and_generation = []
|
118 |
+
for gen_iter in range(args.iterations):
|
119 |
+
starter.record()
|
120 |
+
with torch.no_grad():
|
121 |
+
_ = model.generate(
|
122 |
+
**inputs,
|
123 |
+
max_new_tokens=args.max_new_tokens,
|
124 |
+
do_sample=False,
|
125 |
+
eos_token_id=-1234,
|
126 |
+
)
|
127 |
+
ender.record()
|
128 |
+
torch.cuda.synchronize()
|
129 |
+
t = starter.elapsed_time(ender) / 1000
|
130 |
+
prefill_and_generation.append(t)
|
131 |
+
print(f" iter {gen_iter + 1}: {t:.03f} sec total, {tokens_generated / t:.02f} generated tokens/sec")
|
132 |
+
aver = sum(prefill_and_generation) / len(prefill_and_generation)
|
133 |
+
print(f" average: {aver:.03f} sec total, {tokens_generated / aver:.02f} generated tokens/sec")
|
134 |
+
print(f"These results are obtained for model '{args.model_name_or_path}' with {args.batch_size=}.")
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
main()
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeciLMForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_decilm.DeciLMConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 14336,
|
15 |
+
"max_position_embeddings": 32768,
|
16 |
+
"model_type": "deci",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"num_key_value_heads_per_layer": [4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4],
|
20 |
+
"pretraining_tp": 1,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_scaling": {"type": "dynamic", "factor": 8.0},
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"use_bfloat16": true,
|
26 |
+
"transformers_version": "4.35.2",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000,
|
29 |
+
"tokenizer_class": "LlamaTokenizer"
|
30 |
+
}
|
configuration_decilm.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .version_check import check_transformers_version
|
2 |
+
|
3 |
+
check_transformers_version()
|
4 |
+
|
5 |
+
from .transformers_v4_35_2__configuration_llama import LlamaConfig
|
6 |
+
|
7 |
+
|
8 |
+
class DeciLMConfig(LlamaConfig):
|
9 |
+
r"""
|
10 |
+
Args:
|
11 |
+
num_key_value_heads_per_layer (`List[int]`):
|
12 |
+
The number of key-value heads per layer.
|
13 |
+
"""
|
14 |
+
model_type = "deci"
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
num_key_value_heads_per_layer: list = None,
|
19 |
+
**kwargs,
|
20 |
+
):
|
21 |
+
self.num_key_value_heads_per_layer = num_key_value_heads_per_layer
|
22 |
+
super().__init__(**kwargs)
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f471920afc2e510800809fc7a6d40a29b746aa92f65d0afc8a267344beebaa8
|
3 |
+
size 4985122440
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa58e0f315b22597fd203688b1c48ae2baba1d4c84211d351b2a1853838f961
|
3 |
+
size 4922207848
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:962740f34e74539c9b19ebcc31d710bfb2ee8db8d8f1ca92bc6f9b993e241f0e
|
3 |
+
size 4179805944
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14087102464
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
modeling_decilm.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright and license in the repo.
|
3 |
+
""" PyTorch DeciLM model."""
|
4 |
+
from .version_check import check_transformers_version
|
5 |
+
|
6 |
+
check_transformers_version()
|
7 |
+
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch import nn
|
14 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
15 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
16 |
+
|
17 |
+
from .configuration_decilm import DeciLMConfig
|
18 |
+
from .transformers_v4_35_2__modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
19 |
+
from .transformers_v4_35_2__modeling_llama import LlamaMLP, LlamaRMSNorm, LlamaAttention, apply_rotary_pos_emb, \
|
20 |
+
repeat_kv, LlamaPreTrainedModel, LLAMA_START_DOCSTRING, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, \
|
21 |
+
BaseModelOutputWithPast, LLAMA_INPUTS_DOCSTRING
|
22 |
+
|
23 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES["deci"] = "DeciLMForCausalLM"
|
24 |
+
_CONFIG_FOR_DOC = "DeciLMConfig"
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class DeciLMAttention(LlamaAttention):
|
29 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
30 |
+
|
31 |
+
def __init__(self, config: DeciLMConfig, layer_idx: int):
|
32 |
+
nn.Module.__init__(self)
|
33 |
+
self.config = config
|
34 |
+
self.hidden_size = config.hidden_size
|
35 |
+
self.num_heads = config.num_attention_heads
|
36 |
+
self.head_dim = self.hidden_size // self.num_heads
|
37 |
+
self.layer_idx = layer_idx
|
38 |
+
self.num_key_value_heads = config.num_key_value_heads_per_layer[layer_idx]
|
39 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
40 |
+
self.pretraining_tp = config.pretraining_tp
|
41 |
+
self.max_position_embeddings = config.max_position_embeddings
|
42 |
+
self.rope_theta = getattr(config, 'rope_theta', None)
|
43 |
+
|
44 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
45 |
+
raise ValueError(
|
46 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
47 |
+
f" and `num_heads`: {self.num_heads})."
|
48 |
+
)
|
49 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
50 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
51 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
52 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
53 |
+
|
54 |
+
self._init_rope()
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
hidden_states: torch.Tensor,
|
59 |
+
attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
position_ids: Optional[torch.LongTensor] = None,
|
61 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
62 |
+
output_attentions: bool = False,
|
63 |
+
use_cache: bool = False,
|
64 |
+
**kwargs,
|
65 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
66 |
+
bsz, q_len, _ = hidden_states.size()
|
67 |
+
is_decode = past_key_value is not None
|
68 |
+
if self.pretraining_tp > 1:
|
69 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
70 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
71 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
72 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
73 |
+
|
74 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
75 |
+
query_states = torch.cat(query_states, dim=-1)
|
76 |
+
|
77 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
78 |
+
key_states = torch.cat(key_states, dim=-1)
|
79 |
+
|
80 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
81 |
+
value_states = torch.cat(value_states, dim=-1)
|
82 |
+
|
83 |
+
else:
|
84 |
+
query_states = self.q_proj(hidden_states)
|
85 |
+
key_states = self.k_proj(hidden_states)
|
86 |
+
value_states = self.v_proj(hidden_states)
|
87 |
+
|
88 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
89 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
90 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
91 |
+
|
92 |
+
kv_seq_len = key_states.shape[-2]
|
93 |
+
if past_key_value is not None:
|
94 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
95 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
96 |
+
|
97 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
98 |
+
|
99 |
+
if past_key_value is not None:
|
100 |
+
# reuse k, v, self_attention
|
101 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
102 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
103 |
+
|
104 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
105 |
+
|
106 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
107 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
108 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
109 |
+
if is_decode:
|
110 |
+
with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=True,
|
111 |
+
enable_mem_efficient=attention_mask is None):
|
112 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
|
113 |
+
is_causal=False,
|
114 |
+
attn_mask=attention_mask)
|
115 |
+
attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size)
|
116 |
+
|
117 |
+
else:
|
118 |
+
with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
119 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
|
120 |
+
is_causal=attention_mask is None,
|
121 |
+
attn_mask=attention_mask)
|
122 |
+
|
123 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
124 |
+
raise ValueError(
|
125 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
126 |
+
f" {attn_output.size()}"
|
127 |
+
)
|
128 |
+
|
129 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
|
130 |
+
|
131 |
+
if self.pretraining_tp > 1:
|
132 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
133 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
134 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
135 |
+
else:
|
136 |
+
attn_output = self.o_proj(attn_output)
|
137 |
+
|
138 |
+
attn_weights = None
|
139 |
+
|
140 |
+
return attn_output, attn_weights, past_key_value
|
141 |
+
|
142 |
+
|
143 |
+
class DeciLMDecoderLayer(LlamaDecoderLayer):
|
144 |
+
def __init__(self, config: DeciLMConfig, layer_idx: int):
|
145 |
+
nn.Module.__init__(self)
|
146 |
+
self.hidden_size = config.hidden_size
|
147 |
+
self.layer_idx = layer_idx
|
148 |
+
self.self_attn = DeciLMAttention(config=config, layer_idx=layer_idx)
|
149 |
+
self.mlp = LlamaMLP(config)
|
150 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
151 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
152 |
+
|
153 |
+
|
154 |
+
@add_start_docstrings(
|
155 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
156 |
+
LLAMA_START_DOCSTRING,
|
157 |
+
)
|
158 |
+
class DeciLMPreTrainedModel(LlamaPreTrainedModel):
|
159 |
+
config_class = DeciLMConfig
|
160 |
+
_no_split_modules = ["DeciLMDecoderLayer"]
|
161 |
+
_keys_to_ignore_on_load_missing = ["self_attn.rotary_emb.inv_freq"]
|
162 |
+
|
163 |
+
|
164 |
+
@add_start_docstrings(
|
165 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
166 |
+
LLAMA_START_DOCSTRING,
|
167 |
+
)
|
168 |
+
class DeciLMModel(LlamaModel, DeciLMPreTrainedModel):
|
169 |
+
"""
|
170 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
|
171 |
+
|
172 |
+
Args:
|
173 |
+
config: DeciLMConfig
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, config: DeciLMConfig):
|
177 |
+
DeciLMPreTrainedModel.__init__(self, config)
|
178 |
+
self.padding_idx = config.pad_token_id
|
179 |
+
self.vocab_size = config.vocab_size
|
180 |
+
|
181 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
182 |
+
self.layers = nn.ModuleList([DeciLMDecoderLayer(config, layer_idx) for layer_idx
|
183 |
+
in range(config.num_hidden_layers)])
|
184 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
185 |
+
|
186 |
+
self.gradient_checkpointing = False
|
187 |
+
# Initialize weights and apply final processing
|
188 |
+
self.post_init()
|
189 |
+
|
190 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
input_ids: torch.LongTensor = None,
|
194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
195 |
+
position_ids: Optional[torch.LongTensor] = None,
|
196 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
197 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
198 |
+
use_cache: Optional[bool] = None,
|
199 |
+
output_attentions: Optional[bool] = None,
|
200 |
+
output_hidden_states: Optional[bool] = None,
|
201 |
+
return_dict: Optional[bool] = None,
|
202 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
203 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
204 |
+
output_hidden_states = (
|
205 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
206 |
+
)
|
207 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
208 |
+
|
209 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
210 |
+
|
211 |
+
# retrieve input_ids and inputs_embeds
|
212 |
+
if input_ids is not None and inputs_embeds is not None:
|
213 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
214 |
+
elif input_ids is not None:
|
215 |
+
batch_size, seq_length = input_ids.shape[:2]
|
216 |
+
elif inputs_embeds is not None:
|
217 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
218 |
+
else:
|
219 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
220 |
+
|
221 |
+
past_key_values_length = 0
|
222 |
+
if past_key_values is not None:
|
223 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
224 |
+
|
225 |
+
if position_ids is None:
|
226 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
227 |
+
position_ids = torch.arange(
|
228 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
229 |
+
)
|
230 |
+
position_ids = position_ids.unsqueeze(0)
|
231 |
+
|
232 |
+
if inputs_embeds is None:
|
233 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
234 |
+
|
235 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
236 |
+
if attention_mask is not None:
|
237 |
+
# 4d mask is passed through the layers
|
238 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
239 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
240 |
+
)
|
241 |
+
|
242 |
+
# embed positions
|
243 |
+
hidden_states = inputs_embeds
|
244 |
+
|
245 |
+
if self.gradient_checkpointing and self.training:
|
246 |
+
if use_cache:
|
247 |
+
logger.warning_once(
|
248 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
249 |
+
)
|
250 |
+
use_cache = False
|
251 |
+
|
252 |
+
# decoder layers
|
253 |
+
all_hidden_states = () if output_hidden_states else None
|
254 |
+
all_self_attns = () if output_attentions else None
|
255 |
+
next_decoder_cache = () if use_cache else None
|
256 |
+
|
257 |
+
for idx, decoder_layer in enumerate(self.layers):
|
258 |
+
if output_hidden_states:
|
259 |
+
all_hidden_states += (hidden_states,)
|
260 |
+
|
261 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
262 |
+
|
263 |
+
if self.gradient_checkpointing and self.training:
|
264 |
+
layer_outputs = self._gradient_checkpointing_func(
|
265 |
+
decoder_layer.__call__,
|
266 |
+
hidden_states,
|
267 |
+
attention_mask,
|
268 |
+
position_ids,
|
269 |
+
past_key_value,
|
270 |
+
output_attentions,
|
271 |
+
use_cache,
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
layer_outputs = decoder_layer(
|
275 |
+
hidden_states,
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
position_ids=position_ids,
|
278 |
+
past_key_value=past_key_value,
|
279 |
+
output_attentions=output_attentions,
|
280 |
+
use_cache=use_cache,
|
281 |
+
)
|
282 |
+
|
283 |
+
hidden_states = layer_outputs[0]
|
284 |
+
|
285 |
+
if use_cache:
|
286 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
287 |
+
|
288 |
+
if output_attentions:
|
289 |
+
all_self_attns += (layer_outputs[1],)
|
290 |
+
|
291 |
+
hidden_states = self.norm(hidden_states)
|
292 |
+
|
293 |
+
# add hidden states from the last decoder layer
|
294 |
+
if output_hidden_states:
|
295 |
+
all_hidden_states += (hidden_states,)
|
296 |
+
|
297 |
+
next_cache = next_decoder_cache if use_cache else None
|
298 |
+
if not return_dict:
|
299 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
300 |
+
return BaseModelOutputWithPast(
|
301 |
+
last_hidden_state=hidden_states,
|
302 |
+
past_key_values=next_cache,
|
303 |
+
hidden_states=all_hidden_states,
|
304 |
+
attentions=all_self_attns,
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
class DeciLMForCausalLM(LlamaForCausalLM, DeciLMPreTrainedModel):
|
309 |
+
def __init__(self, config):
|
310 |
+
DeciLMPreTrainedModel.__init__(self, config)
|
311 |
+
self.model = DeciLMModel(config)
|
312 |
+
self.pretraining_tp = config.pretraining_tp
|
313 |
+
self.vocab_size = config.vocab_size
|
314 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
315 |
+
|
316 |
+
# Initialize weights and apply final processing
|
317 |
+
self.post_init()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"additional_special_tokens": [],
|
29 |
+
"bos_token": "<s>",
|
30 |
+
"clean_up_tokenization_spaces": false,
|
31 |
+
"eos_token": "</s>",
|
32 |
+
"legacy": true,
|
33 |
+
"model_max_length": 1000000000000000019884624838656,
|
34 |
+
"pad_token": null,
|
35 |
+
"sp_model_kwargs": {},
|
36 |
+
"spaces_between_special_tokens": false,
|
37 |
+
"tokenizer_class": "LlamaTokenizer",
|
38 |
+
"unk_token": "<unk>",
|
39 |
+
"use_default_system_prompt": true,
|
40 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '### User:\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '### System:\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '### Assistant:\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '### Assistant:' }}\n{% endif %}\n{% endfor %}"
|
41 |
+
}
|
transformers_v4_35_2__configuration_llama.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class LlamaConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
64 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
65 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
81 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to tie weight embeddings
|
86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
87 |
+
The base period of the RoPE embeddings.
|
88 |
+
rope_scaling (`Dict`, *optional*):
|
89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
93 |
+
these scaling strategies behave:
|
94 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
95 |
+
experimental feature, subject to breaking API changes in future versions.
|
96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
98 |
+
|
99 |
+
|
100 |
+
```python
|
101 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
102 |
+
|
103 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
104 |
+
>>> configuration = LlamaConfig()
|
105 |
+
|
106 |
+
>>> # Initializing a model from the llama-7b style configuration
|
107 |
+
>>> model = LlamaModel(configuration)
|
108 |
+
|
109 |
+
>>> # Accessing the model configuration
|
110 |
+
>>> configuration = model.config
|
111 |
+
```"""
|
112 |
+
model_type = "llama"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32000,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
hidden_act="silu",
|
124 |
+
max_position_embeddings=2048,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-6,
|
127 |
+
use_cache=True,
|
128 |
+
pad_token_id=None,
|
129 |
+
bos_token_id=1,
|
130 |
+
eos_token_id=2,
|
131 |
+
pretraining_tp=1,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
attention_bias=False,
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
self.vocab_size = vocab_size
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.hidden_size = hidden_size
|
141 |
+
self.intermediate_size = intermediate_size
|
142 |
+
self.num_hidden_layers = num_hidden_layers
|
143 |
+
self.num_attention_heads = num_attention_heads
|
144 |
+
|
145 |
+
# for backward compatibility
|
146 |
+
if num_key_value_heads is None:
|
147 |
+
num_key_value_heads = num_attention_heads
|
148 |
+
|
149 |
+
self.num_key_value_heads = num_key_value_heads
|
150 |
+
self.hidden_act = hidden_act
|
151 |
+
self.initializer_range = initializer_range
|
152 |
+
self.rms_norm_eps = rms_norm_eps
|
153 |
+
self.pretraining_tp = pretraining_tp
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.rope_theta = rope_theta
|
156 |
+
self.rope_scaling = rope_scaling
|
157 |
+
self._rope_scaling_validation()
|
158 |
+
self.attention_bias = attention_bias
|
159 |
+
|
160 |
+
super().__init__(
|
161 |
+
pad_token_id=pad_token_id,
|
162 |
+
bos_token_id=bos_token_id,
|
163 |
+
eos_token_id=eos_token_id,
|
164 |
+
tie_word_embeddings=tie_word_embeddings,
|
165 |
+
**kwargs,
|
166 |
+
)
|
167 |
+
|
168 |
+
def _rope_scaling_validation(self):
|
169 |
+
"""
|
170 |
+
Validate the `rope_scaling` configuration.
|
171 |
+
"""
|
172 |
+
if self.rope_scaling is None:
|
173 |
+
return
|
174 |
+
|
175 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
176 |
+
raise ValueError(
|
177 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
178 |
+
f"got {self.rope_scaling}"
|
179 |
+
)
|
180 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
181 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
182 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
183 |
+
raise ValueError(
|
184 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
185 |
+
)
|
186 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
187 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
transformers_v4_35_2__modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
|
19 |
+
class AttentionMaskConverter:
|
20 |
+
"""
|
21 |
+
A utility attention mask class that allows one to:
|
22 |
+
- Create a causal 4d mask
|
23 |
+
- Create a causal 4d mask with slided window
|
24 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
25 |
+
key_value_length) that can be multiplied with attention scores
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
is_causal (`bool`):
|
29 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
30 |
+
|
31 |
+
sliding_window (`int`, *optional*):
|
32 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
36 |
+
self.is_causal = is_causal
|
37 |
+
self.sliding_window = sliding_window
|
38 |
+
|
39 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
40 |
+
raise ValueError(
|
41 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
42 |
+
)
|
43 |
+
|
44 |
+
def to_causal_4d(
|
45 |
+
self,
|
46 |
+
batch_size: int,
|
47 |
+
query_length: int,
|
48 |
+
key_value_length: int,
|
49 |
+
dtype: torch.dtype = torch.float32,
|
50 |
+
device: Union[torch.device, "str"] = "cpu",
|
51 |
+
) -> torch.Tensor:
|
52 |
+
"""
|
53 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
54 |
+
bias to upper right hand triangular matrix (causal mask).
|
55 |
+
"""
|
56 |
+
if not self.is_causal:
|
57 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
58 |
+
|
59 |
+
# If shape is not cached, create a new causal mask and cache it
|
60 |
+
input_shape = (batch_size, query_length)
|
61 |
+
past_key_values_length = key_value_length - query_length
|
62 |
+
|
63 |
+
# create causal mask
|
64 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
65 |
+
causal_4d_mask = None
|
66 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
67 |
+
causal_4d_mask = self._make_causal_mask(
|
68 |
+
input_shape,
|
69 |
+
dtype,
|
70 |
+
device=device,
|
71 |
+
past_key_values_length=past_key_values_length,
|
72 |
+
sliding_window=self.sliding_window,
|
73 |
+
)
|
74 |
+
|
75 |
+
return causal_4d_mask
|
76 |
+
|
77 |
+
def to_4d(
|
78 |
+
self,
|
79 |
+
attention_mask_2d: torch.Tensor,
|
80 |
+
query_length: int,
|
81 |
+
key_value_length: Optional[int] = None,
|
82 |
+
dtype: torch.dtype = torch.float32,
|
83 |
+
) -> torch.Tensor:
|
84 |
+
"""
|
85 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
86 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
87 |
+
causal, a causal mask will be added.
|
88 |
+
"""
|
89 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
90 |
+
|
91 |
+
# create causal mask
|
92 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
93 |
+
causal_4d_mask = None
|
94 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
95 |
+
if key_value_length is None:
|
96 |
+
raise ValueError(
|
97 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
98 |
+
)
|
99 |
+
|
100 |
+
past_key_values_length = key_value_length - query_length
|
101 |
+
causal_4d_mask = self._make_causal_mask(
|
102 |
+
input_shape,
|
103 |
+
dtype,
|
104 |
+
device=attention_mask_2d.device,
|
105 |
+
past_key_values_length=past_key_values_length,
|
106 |
+
sliding_window=self.sliding_window,
|
107 |
+
)
|
108 |
+
elif self.sliding_window is not None:
|
109 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
110 |
+
|
111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
112 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
113 |
+
attention_mask_2d.device
|
114 |
+
)
|
115 |
+
expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
|
116 |
+
|
117 |
+
return expanded_4d_mask
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def _make_causal_mask(
|
121 |
+
input_ids_shape: torch.Size,
|
122 |
+
dtype: torch.dtype,
|
123 |
+
device: torch.device,
|
124 |
+
past_key_values_length: int = 0,
|
125 |
+
sliding_window: Optional[int] = None,
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Make causal mask used for bi-directional self-attention.
|
129 |
+
"""
|
130 |
+
bsz, tgt_len = input_ids_shape
|
131 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
132 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
133 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
134 |
+
|
135 |
+
mask = mask.to(dtype)
|
136 |
+
|
137 |
+
if past_key_values_length > 0:
|
138 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
139 |
+
|
140 |
+
# add lower triangular sliding window mask if necessary
|
141 |
+
if sliding_window is not None:
|
142 |
+
diagonal = past_key_values_length - sliding_window + 1
|
143 |
+
|
144 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
145 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
146 |
+
|
147 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
151 |
+
"""
|
152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
153 |
+
"""
|
154 |
+
bsz, src_len = mask.size()
|
155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
156 |
+
|
157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
158 |
+
|
159 |
+
inverted_mask = 1.0 - expanded_mask
|
160 |
+
|
161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
162 |
+
|
163 |
+
|
164 |
+
def _prepare_4d_causal_attention_mask(
|
165 |
+
attention_mask: Optional[torch.Tensor],
|
166 |
+
input_shape: Union[torch.Size, Tuple, List],
|
167 |
+
inputs_embeds: torch.Tensor,
|
168 |
+
past_key_values_length: int,
|
169 |
+
sliding_window: Optional[int] = None,
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
173 |
+
`(batch_size, key_value_length)`
|
174 |
+
|
175 |
+
Args:
|
176 |
+
attention_mask (`torch.Tensor` or `None`):
|
177 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
178 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
179 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
180 |
+
inputs_embeds (`torch.Tensor`):
|
181 |
+
The embedded inputs as a torch Tensor.
|
182 |
+
past_key_values_length (`int`):
|
183 |
+
The length of the key value cache.
|
184 |
+
sliding_window (`int`, *optional*):
|
185 |
+
If the model uses windowed attention, a sliding window should be passed.
|
186 |
+
"""
|
187 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
188 |
+
|
189 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
190 |
+
|
191 |
+
# 4d mask is passed through the layers
|
192 |
+
if attention_mask is not None:
|
193 |
+
attention_mask = attn_mask_converter.to_4d(
|
194 |
+
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
198 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
199 |
+
)
|
200 |
+
|
201 |
+
return attention_mask
|
202 |
+
|
203 |
+
|
204 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
205 |
+
"""
|
206 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
207 |
+
`(batch_size, key_value_length)`
|
208 |
+
|
209 |
+
Args:
|
210 |
+
mask (`torch.Tensor` or `None`):
|
211 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
212 |
+
dtype (`torch.dtype`):
|
213 |
+
The torch dtype the created mask shall have.
|
214 |
+
tgt_len (`int`):
|
215 |
+
The target length or query length the created mask shall have.
|
216 |
+
"""
|
217 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
218 |
+
|
219 |
+
|
220 |
+
def _create_4d_causal_attention_mask(
|
221 |
+
input_shape: Union[torch.Size, Tuple, List],
|
222 |
+
dtype: torch.dtype,
|
223 |
+
device: torch.device,
|
224 |
+
past_key_values_length: int = 0,
|
225 |
+
sliding_window: Optional[int] = None,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
229 |
+
|
230 |
+
Args:
|
231 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
232 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
233 |
+
dtype (`torch.dtype`):
|
234 |
+
The torch dtype the created mask shall have.
|
235 |
+
device (`int`):
|
236 |
+
The torch device the created mask shall have.
|
237 |
+
sliding_window (`int`, *optional*):
|
238 |
+
If the model uses windowed attention, a sliding window should be passed.
|
239 |
+
"""
|
240 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
241 |
+
|
242 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
243 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
244 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
245 |
+
)
|
246 |
+
|
247 |
+
return attention_mask
|
transformers_v4_35_2__modeling_llama.py
ADDED
@@ -0,0 +1,1248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from .transformers_v4_35_2__modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
36 |
+
from transformers.utils import (
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
44 |
+
from .transformers_v4_35_2__configuration_llama import LlamaConfig
|
45 |
+
|
46 |
+
# Deci: commented out to prevent unnecessary dependency
|
47 |
+
# if is_flash_attn_2_available():
|
48 |
+
# from flash_attn import flash_attn_func, flash_attn_varlen_func
|
49 |
+
# from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
50 |
+
|
51 |
+
|
52 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
53 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
54 |
+
if is_torch_fx_available():
|
55 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__)
|
59 |
+
|
60 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
61 |
+
|
62 |
+
|
63 |
+
def _get_unpad_data(attention_mask):
|
64 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
65 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
66 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
67 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
68 |
+
return (
|
69 |
+
indices,
|
70 |
+
cu_seqlens,
|
71 |
+
max_seqlen_in_batch,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
76 |
+
warnings.warn(
|
77 |
+
"Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils.AttentionMaskConverter._prepare_4d_attention_mask"
|
78 |
+
)
|
79 |
+
return AttentionMaskConverter._prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
80 |
+
|
81 |
+
|
82 |
+
def _make_causal_mask(
|
83 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
84 |
+
):
|
85 |
+
warnings.warn(
|
86 |
+
"Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
|
87 |
+
)
|
88 |
+
return AttentionMaskConverter._make_causal_mask(
|
89 |
+
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
class LlamaRMSNorm(nn.Module):
|
94 |
+
def __init__(self, hidden_size, eps=1e-6):
|
95 |
+
"""
|
96 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
97 |
+
"""
|
98 |
+
super().__init__()
|
99 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
100 |
+
self.variance_epsilon = eps
|
101 |
+
|
102 |
+
def forward(self, hidden_states):
|
103 |
+
input_dtype = hidden_states.dtype
|
104 |
+
hidden_states = hidden_states.to(torch.float32)
|
105 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
106 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
107 |
+
return self.weight * hidden_states.to(input_dtype)
|
108 |
+
|
109 |
+
|
110 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
111 |
+
|
112 |
+
|
113 |
+
class LlamaRotaryEmbedding(nn.Module):
|
114 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.dim = dim
|
118 |
+
self.max_position_embeddings = max_position_embeddings
|
119 |
+
self.base = base
|
120 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
121 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
122 |
+
|
123 |
+
# Build here to make `torch.jit.trace` work.
|
124 |
+
self._set_cos_sin_cache(
|
125 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
126 |
+
)
|
127 |
+
|
128 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
129 |
+
self.max_seq_len_cached = seq_len
|
130 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
131 |
+
|
132 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
133 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
134 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
135 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
136 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
137 |
+
|
138 |
+
def forward(self, x, seq_len=None):
|
139 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
140 |
+
if seq_len > self.max_seq_len_cached:
|
141 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
142 |
+
|
143 |
+
return (
|
144 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
145 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
150 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
151 |
+
|
152 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
153 |
+
self.scaling_factor = scaling_factor
|
154 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
155 |
+
|
156 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
157 |
+
self.max_seq_len_cached = seq_len
|
158 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
159 |
+
t = t / self.scaling_factor
|
160 |
+
|
161 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
162 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
163 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
164 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
165 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
166 |
+
|
167 |
+
|
168 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
169 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
170 |
+
|
171 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
172 |
+
self.scaling_factor = scaling_factor
|
173 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
174 |
+
|
175 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
176 |
+
self.max_seq_len_cached = seq_len
|
177 |
+
|
178 |
+
if seq_len > self.max_position_embeddings:
|
179 |
+
base = self.base * (
|
180 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
181 |
+
) ** (self.dim / (self.dim - 2))
|
182 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
183 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
184 |
+
|
185 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
186 |
+
|
187 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
188 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
189 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
190 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
191 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
192 |
+
|
193 |
+
|
194 |
+
def rotate_half(x):
|
195 |
+
"""Rotates half the hidden dims of the input."""
|
196 |
+
x1 = x[..., : x.shape[-1] // 2]
|
197 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
198 |
+
return torch.cat((-x2, x1), dim=-1)
|
199 |
+
|
200 |
+
|
201 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
202 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
q (`torch.Tensor`): The query tensor.
|
206 |
+
k (`torch.Tensor`): The key tensor.
|
207 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
208 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
209 |
+
position_ids (`torch.Tensor`):
|
210 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
211 |
+
used to pass offsetted position ids when working with a KV-cache.
|
212 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
213 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
214 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
215 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
216 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
217 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
218 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
219 |
+
Returns:
|
220 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
221 |
+
"""
|
222 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
223 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
224 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
225 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
226 |
+
return q_embed, k_embed
|
227 |
+
|
228 |
+
|
229 |
+
class LlamaMLP(nn.Module):
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
self.config = config
|
233 |
+
self.hidden_size = config.hidden_size
|
234 |
+
self.intermediate_size = config.intermediate_size
|
235 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
236 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
237 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
238 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
if self.config.pretraining_tp > 1:
|
242 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
243 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
244 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
245 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
246 |
+
|
247 |
+
gate_proj = torch.cat(
|
248 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
249 |
+
)
|
250 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
251 |
+
|
252 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
253 |
+
down_proj = [
|
254 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
255 |
+
]
|
256 |
+
down_proj = sum(down_proj)
|
257 |
+
else:
|
258 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
259 |
+
|
260 |
+
return down_proj
|
261 |
+
|
262 |
+
|
263 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
264 |
+
"""
|
265 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
266 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
267 |
+
"""
|
268 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
269 |
+
if n_rep == 1:
|
270 |
+
return hidden_states
|
271 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
272 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
273 |
+
|
274 |
+
|
275 |
+
class LlamaAttention(nn.Module):
|
276 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
277 |
+
|
278 |
+
def __init__(self, config: LlamaConfig):
|
279 |
+
super().__init__()
|
280 |
+
self.config = config
|
281 |
+
self.hidden_size = config.hidden_size
|
282 |
+
self.num_heads = config.num_attention_heads
|
283 |
+
self.head_dim = self.hidden_size // self.num_heads
|
284 |
+
self.num_key_value_heads = config.num_key_value_heads
|
285 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
286 |
+
self.max_position_embeddings = config.max_position_embeddings
|
287 |
+
self.rope_theta = config.rope_theta
|
288 |
+
self.is_causal = True
|
289 |
+
|
290 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
291 |
+
raise ValueError(
|
292 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
293 |
+
f" and `num_heads`: {self.num_heads})."
|
294 |
+
)
|
295 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
296 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
297 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
298 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
299 |
+
self._init_rope()
|
300 |
+
|
301 |
+
def _init_rope(self):
|
302 |
+
if self.config.rope_scaling is None:
|
303 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
304 |
+
self.head_dim,
|
305 |
+
max_position_embeddings=self.max_position_embeddings,
|
306 |
+
base=self.rope_theta,
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
scaling_type = self.config.rope_scaling["type"]
|
310 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
311 |
+
if scaling_type == "linear":
|
312 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
313 |
+
self.head_dim,
|
314 |
+
max_position_embeddings=self.max_position_embeddings,
|
315 |
+
scaling_factor=scaling_factor,
|
316 |
+
base=self.rope_theta,
|
317 |
+
)
|
318 |
+
elif scaling_type == "dynamic":
|
319 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
320 |
+
self.head_dim,
|
321 |
+
max_position_embeddings=self.max_position_embeddings,
|
322 |
+
scaling_factor=scaling_factor,
|
323 |
+
base=self.rope_theta,
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
327 |
+
|
328 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
329 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
330 |
+
|
331 |
+
def forward(
|
332 |
+
self,
|
333 |
+
hidden_states: torch.Tensor,
|
334 |
+
attention_mask: Optional[torch.Tensor] = None,
|
335 |
+
position_ids: Optional[torch.LongTensor] = None,
|
336 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
337 |
+
output_attentions: bool = False,
|
338 |
+
use_cache: bool = False,
|
339 |
+
**kwargs,
|
340 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
341 |
+
if "padding_mask" in kwargs:
|
342 |
+
warnings.warn(
|
343 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
344 |
+
)
|
345 |
+
|
346 |
+
bsz, q_len, _ = hidden_states.size()
|
347 |
+
|
348 |
+
if self.config.pretraining_tp > 1:
|
349 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
350 |
+
query_slices = self.q_proj.weight.split(
|
351 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
352 |
+
)
|
353 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
354 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
355 |
+
|
356 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
357 |
+
query_states = torch.cat(query_states, dim=-1)
|
358 |
+
|
359 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
360 |
+
key_states = torch.cat(key_states, dim=-1)
|
361 |
+
|
362 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
363 |
+
value_states = torch.cat(value_states, dim=-1)
|
364 |
+
|
365 |
+
else:
|
366 |
+
query_states = self.q_proj(hidden_states)
|
367 |
+
key_states = self.k_proj(hidden_states)
|
368 |
+
value_states = self.v_proj(hidden_states)
|
369 |
+
|
370 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
371 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
372 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
373 |
+
|
374 |
+
kv_seq_len = key_states.shape[-2]
|
375 |
+
if past_key_value is not None:
|
376 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
377 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
378 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
379 |
+
|
380 |
+
if past_key_value is not None:
|
381 |
+
# reuse k, v, self_attention
|
382 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
383 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
384 |
+
|
385 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
386 |
+
|
387 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
388 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
389 |
+
|
390 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
391 |
+
|
392 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
393 |
+
raise ValueError(
|
394 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
395 |
+
f" {attn_weights.size()}"
|
396 |
+
)
|
397 |
+
|
398 |
+
if attention_mask is not None:
|
399 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
400 |
+
raise ValueError(
|
401 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
402 |
+
)
|
403 |
+
attn_weights = attn_weights + attention_mask
|
404 |
+
|
405 |
+
# upcast attention to fp32
|
406 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
407 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
408 |
+
|
409 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
410 |
+
raise ValueError(
|
411 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
412 |
+
f" {attn_output.size()}"
|
413 |
+
)
|
414 |
+
|
415 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
416 |
+
|
417 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
418 |
+
|
419 |
+
if self.config.pretraining_tp > 1:
|
420 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
421 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
422 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
423 |
+
else:
|
424 |
+
attn_output = self.o_proj(attn_output)
|
425 |
+
|
426 |
+
if not output_attentions:
|
427 |
+
attn_weights = None
|
428 |
+
|
429 |
+
return attn_output, attn_weights, past_key_value
|
430 |
+
|
431 |
+
|
432 |
+
class LlamaFlashAttention2(LlamaAttention):
|
433 |
+
"""
|
434 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
435 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
436 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
437 |
+
"""
|
438 |
+
|
439 |
+
def forward(
|
440 |
+
self,
|
441 |
+
hidden_states: torch.Tensor,
|
442 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
443 |
+
position_ids: Optional[torch.LongTensor] = None,
|
444 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
445 |
+
output_attentions: bool = False,
|
446 |
+
use_cache: bool = False,
|
447 |
+
**kwargs,
|
448 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
449 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
450 |
+
if "padding_mask" in kwargs:
|
451 |
+
warnings.warn(
|
452 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
453 |
+
)
|
454 |
+
|
455 |
+
# overwrite attention_mask with padding_mask
|
456 |
+
attention_mask = kwargs.pop("padding_mask")
|
457 |
+
|
458 |
+
output_attentions = False
|
459 |
+
|
460 |
+
bsz, q_len, _ = hidden_states.size()
|
461 |
+
|
462 |
+
query_states = self.q_proj(hidden_states)
|
463 |
+
key_states = self.k_proj(hidden_states)
|
464 |
+
value_states = self.v_proj(hidden_states)
|
465 |
+
|
466 |
+
# Flash attention requires the input to have the shape
|
467 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
468 |
+
# therefore we just need to keep the original shape
|
469 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
470 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
471 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
472 |
+
|
473 |
+
kv_seq_len = key_states.shape[-2]
|
474 |
+
if past_key_value is not None:
|
475 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
476 |
+
|
477 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
478 |
+
|
479 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
480 |
+
|
481 |
+
if past_key_value is not None:
|
482 |
+
# reuse k, v, self_attention
|
483 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
484 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
485 |
+
|
486 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
487 |
+
|
488 |
+
query_states = query_states.transpose(1, 2)
|
489 |
+
key_states = key_states.transpose(1, 2)
|
490 |
+
value_states = value_states.transpose(1, 2)
|
491 |
+
|
492 |
+
# TODO: llama does not have dropout in the config??
|
493 |
+
# It is recommended to use dropout with FA according to the docs
|
494 |
+
# when training.
|
495 |
+
dropout_rate = 0.0 # if not self.training else self.attn_dropout
|
496 |
+
|
497 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
498 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
499 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
500 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
501 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
502 |
+
|
503 |
+
input_dtype = query_states.dtype
|
504 |
+
if input_dtype == torch.float32:
|
505 |
+
# Handle the case where the model is quantized
|
506 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
507 |
+
target_dtype = self.config._pre_quantization_dtype
|
508 |
+
else:
|
509 |
+
target_dtype = self.q_proj.weight.dtype
|
510 |
+
|
511 |
+
logger.warning_once(
|
512 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
513 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
514 |
+
f" {target_dtype}."
|
515 |
+
)
|
516 |
+
|
517 |
+
query_states = query_states.to(target_dtype)
|
518 |
+
key_states = key_states.to(target_dtype)
|
519 |
+
value_states = value_states.to(target_dtype)
|
520 |
+
|
521 |
+
attn_output = self._flash_attention_forward(
|
522 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
523 |
+
)
|
524 |
+
|
525 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
526 |
+
attn_output = self.o_proj(attn_output)
|
527 |
+
|
528 |
+
if not output_attentions:
|
529 |
+
attn_weights = None
|
530 |
+
|
531 |
+
return attn_output, attn_weights, past_key_value
|
532 |
+
|
533 |
+
def _flash_attention_forward(
|
534 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
535 |
+
):
|
536 |
+
"""
|
537 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
538 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
539 |
+
|
540 |
+
Args:
|
541 |
+
query_states (`torch.Tensor`):
|
542 |
+
Input query states to be passed to Flash Attention API
|
543 |
+
key_states (`torch.Tensor`):
|
544 |
+
Input key states to be passed to Flash Attention API
|
545 |
+
value_states (`torch.Tensor`):
|
546 |
+
Input value states to be passed to Flash Attention API
|
547 |
+
attention_mask (`torch.Tensor`):
|
548 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
549 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
550 |
+
dropout (`int`, *optional*):
|
551 |
+
Attention dropout
|
552 |
+
softmax_scale (`float`, *optional*):
|
553 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
554 |
+
"""
|
555 |
+
# Contains at least one padding token in the sequence
|
556 |
+
if attention_mask is not None:
|
557 |
+
batch_size = query_states.shape[0]
|
558 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
559 |
+
query_states, key_states, value_states, attention_mask, query_length
|
560 |
+
)
|
561 |
+
|
562 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
563 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
564 |
+
|
565 |
+
attn_output_unpad = flash_attn_varlen_func(
|
566 |
+
query_states,
|
567 |
+
key_states,
|
568 |
+
value_states,
|
569 |
+
cu_seqlens_q=cu_seqlens_q,
|
570 |
+
cu_seqlens_k=cu_seqlens_k,
|
571 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
572 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
573 |
+
dropout_p=dropout,
|
574 |
+
softmax_scale=softmax_scale,
|
575 |
+
causal=self.is_causal,
|
576 |
+
)
|
577 |
+
|
578 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
579 |
+
else:
|
580 |
+
attn_output = flash_attn_func(
|
581 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=self.is_causal
|
582 |
+
)
|
583 |
+
|
584 |
+
return attn_output
|
585 |
+
|
586 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
587 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
588 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
589 |
+
|
590 |
+
key_layer = index_first_axis(
|
591 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
592 |
+
)
|
593 |
+
value_layer = index_first_axis(
|
594 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
if query_length == kv_seq_len:
|
597 |
+
query_layer = index_first_axis(
|
598 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
599 |
+
)
|
600 |
+
cu_seqlens_q = cu_seqlens_k
|
601 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
602 |
+
indices_q = indices_k
|
603 |
+
elif query_length == 1:
|
604 |
+
max_seqlen_in_batch_q = 1
|
605 |
+
cu_seqlens_q = torch.arange(
|
606 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
607 |
+
) # There is a memcpy here, that is very bad.
|
608 |
+
indices_q = cu_seqlens_q[:-1]
|
609 |
+
query_layer = query_layer.squeeze(1)
|
610 |
+
else:
|
611 |
+
# The -q_len: slice assumes left padding.
|
612 |
+
attention_mask = attention_mask[:, -query_length:]
|
613 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
614 |
+
|
615 |
+
return (
|
616 |
+
query_layer,
|
617 |
+
key_layer,
|
618 |
+
value_layer,
|
619 |
+
indices_q,
|
620 |
+
(cu_seqlens_q, cu_seqlens_k),
|
621 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class LlamaDecoderLayer(nn.Module):
|
626 |
+
def __init__(self, config: LlamaConfig):
|
627 |
+
super().__init__()
|
628 |
+
self.hidden_size = config.hidden_size
|
629 |
+
self.self_attn = (
|
630 |
+
LlamaAttention(config=config)
|
631 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
632 |
+
else LlamaFlashAttention2(config=config)
|
633 |
+
)
|
634 |
+
self.mlp = LlamaMLP(config)
|
635 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
636 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
637 |
+
|
638 |
+
def forward(
|
639 |
+
self,
|
640 |
+
hidden_states: torch.Tensor,
|
641 |
+
attention_mask: Optional[torch.Tensor] = None,
|
642 |
+
position_ids: Optional[torch.LongTensor] = None,
|
643 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
644 |
+
output_attentions: Optional[bool] = False,
|
645 |
+
use_cache: Optional[bool] = False,
|
646 |
+
**kwargs,
|
647 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
648 |
+
"""
|
649 |
+
Args:
|
650 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
651 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
652 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
653 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
654 |
+
output_attentions (`bool`, *optional*):
|
655 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
656 |
+
returned tensors for more detail.
|
657 |
+
use_cache (`bool`, *optional*):
|
658 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
659 |
+
(see `past_key_values`).
|
660 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
661 |
+
"""
|
662 |
+
if "padding_mask" in kwargs:
|
663 |
+
warnings.warn(
|
664 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
665 |
+
)
|
666 |
+
|
667 |
+
residual = hidden_states
|
668 |
+
|
669 |
+
hidden_states = self.input_layernorm(hidden_states)
|
670 |
+
|
671 |
+
# Self Attention
|
672 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
673 |
+
hidden_states=hidden_states,
|
674 |
+
attention_mask=attention_mask,
|
675 |
+
position_ids=position_ids,
|
676 |
+
past_key_value=past_key_value,
|
677 |
+
output_attentions=output_attentions,
|
678 |
+
use_cache=use_cache,
|
679 |
+
**kwargs,
|
680 |
+
)
|
681 |
+
hidden_states = residual + hidden_states
|
682 |
+
|
683 |
+
# Fully Connected
|
684 |
+
residual = hidden_states
|
685 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
686 |
+
hidden_states = self.mlp(hidden_states)
|
687 |
+
hidden_states = residual + hidden_states
|
688 |
+
|
689 |
+
outputs = (hidden_states,)
|
690 |
+
|
691 |
+
if output_attentions:
|
692 |
+
outputs += (self_attn_weights,)
|
693 |
+
|
694 |
+
if use_cache:
|
695 |
+
outputs += (present_key_value,)
|
696 |
+
|
697 |
+
return outputs
|
698 |
+
|
699 |
+
|
700 |
+
LLAMA_START_DOCSTRING = r"""
|
701 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
702 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
703 |
+
etc.)
|
704 |
+
|
705 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
706 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
707 |
+
and behavior.
|
708 |
+
|
709 |
+
Parameters:
|
710 |
+
config ([`LlamaConfig`]):
|
711 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
712 |
+
load the weights associated with the model, only the configuration. Check out the
|
713 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
714 |
+
"""
|
715 |
+
|
716 |
+
|
717 |
+
@add_start_docstrings(
|
718 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
719 |
+
LLAMA_START_DOCSTRING,
|
720 |
+
)
|
721 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
722 |
+
config_class = LlamaConfig
|
723 |
+
base_model_prefix = "model"
|
724 |
+
supports_gradient_checkpointing = True
|
725 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
726 |
+
_skip_keys_device_placement = "past_key_values"
|
727 |
+
_supports_flash_attn_2 = True
|
728 |
+
|
729 |
+
def _init_weights(self, module):
|
730 |
+
std = self.config.initializer_range
|
731 |
+
if isinstance(module, nn.Linear):
|
732 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
733 |
+
if module.bias is not None:
|
734 |
+
module.bias.data.zero_()
|
735 |
+
elif isinstance(module, nn.Embedding):
|
736 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
737 |
+
if module.padding_idx is not None:
|
738 |
+
module.weight.data[module.padding_idx].zero_()
|
739 |
+
|
740 |
+
|
741 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
742 |
+
Args:
|
743 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
744 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
745 |
+
it.
|
746 |
+
|
747 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
748 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
749 |
+
|
750 |
+
[What are input IDs?](../glossary#input-ids)
|
751 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
752 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
753 |
+
|
754 |
+
- 1 for tokens that are **not masked**,
|
755 |
+
- 0 for tokens that are **masked**.
|
756 |
+
|
757 |
+
[What are attention masks?](../glossary#attention-mask)
|
758 |
+
|
759 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
760 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
761 |
+
|
762 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
763 |
+
`past_key_values`).
|
764 |
+
|
765 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
766 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
767 |
+
information on the default strategy.
|
768 |
+
|
769 |
+
- 1 indicates the head is **not masked**,
|
770 |
+
- 0 indicates the head is **masked**.
|
771 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
772 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
773 |
+
config.n_positions - 1]`.
|
774 |
+
|
775 |
+
[What are position IDs?](../glossary#position-ids)
|
776 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
777 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
778 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
779 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
780 |
+
|
781 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
782 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
783 |
+
|
784 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
785 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
786 |
+
of shape `(batch_size, sequence_length)`.
|
787 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
788 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
789 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
790 |
+
model's internal embedding lookup matrix.
|
791 |
+
use_cache (`bool`, *optional*):
|
792 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
793 |
+
`past_key_values`).
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
796 |
+
tensors for more detail.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
799 |
+
more detail.
|
800 |
+
return_dict (`bool`, *optional*):
|
801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
802 |
+
"""
|
803 |
+
|
804 |
+
|
805 |
+
@add_start_docstrings(
|
806 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
807 |
+
LLAMA_START_DOCSTRING,
|
808 |
+
)
|
809 |
+
class LlamaModel(LlamaPreTrainedModel):
|
810 |
+
"""
|
811 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
812 |
+
|
813 |
+
Args:
|
814 |
+
config: LlamaConfig
|
815 |
+
"""
|
816 |
+
|
817 |
+
def __init__(self, config: LlamaConfig):
|
818 |
+
super().__init__(config)
|
819 |
+
self.padding_idx = config.pad_token_id
|
820 |
+
self.vocab_size = config.vocab_size
|
821 |
+
|
822 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
823 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
824 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
825 |
+
|
826 |
+
self.gradient_checkpointing = False
|
827 |
+
# Initialize weights and apply final processing
|
828 |
+
self.post_init()
|
829 |
+
|
830 |
+
def get_input_embeddings(self):
|
831 |
+
return self.embed_tokens
|
832 |
+
|
833 |
+
def set_input_embeddings(self, value):
|
834 |
+
self.embed_tokens = value
|
835 |
+
|
836 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
837 |
+
def forward(
|
838 |
+
self,
|
839 |
+
input_ids: torch.LongTensor = None,
|
840 |
+
attention_mask: Optional[torch.Tensor] = None,
|
841 |
+
position_ids: Optional[torch.LongTensor] = None,
|
842 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
843 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
844 |
+
use_cache: Optional[bool] = None,
|
845 |
+
output_attentions: Optional[bool] = None,
|
846 |
+
output_hidden_states: Optional[bool] = None,
|
847 |
+
return_dict: Optional[bool] = None,
|
848 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
849 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
850 |
+
output_hidden_states = (
|
851 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
852 |
+
)
|
853 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
854 |
+
|
855 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
856 |
+
|
857 |
+
# retrieve input_ids and inputs_embeds
|
858 |
+
if input_ids is not None and inputs_embeds is not None:
|
859 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
860 |
+
elif input_ids is not None:
|
861 |
+
batch_size, seq_length = input_ids.shape[:2]
|
862 |
+
elif inputs_embeds is not None:
|
863 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
864 |
+
else:
|
865 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
866 |
+
|
867 |
+
past_key_values_length = 0
|
868 |
+
if past_key_values is not None:
|
869 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
870 |
+
|
871 |
+
if position_ids is None:
|
872 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
873 |
+
position_ids = torch.arange(
|
874 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
875 |
+
)
|
876 |
+
position_ids = position_ids.unsqueeze(0)
|
877 |
+
|
878 |
+
if inputs_embeds is None:
|
879 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
880 |
+
|
881 |
+
if getattr(self.config, "_flash_attn_2_enabled", False):
|
882 |
+
# 2d mask is passed through the layers
|
883 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
884 |
+
else:
|
885 |
+
# 4d mask is passed through the layers
|
886 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
887 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
888 |
+
)
|
889 |
+
|
890 |
+
# embed positions
|
891 |
+
hidden_states = inputs_embeds
|
892 |
+
|
893 |
+
if self.gradient_checkpointing and self.training:
|
894 |
+
if use_cache:
|
895 |
+
logger.warning_once(
|
896 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
897 |
+
)
|
898 |
+
use_cache = False
|
899 |
+
|
900 |
+
# decoder layers
|
901 |
+
all_hidden_states = () if output_hidden_states else None
|
902 |
+
all_self_attns = () if output_attentions else None
|
903 |
+
next_decoder_cache = () if use_cache else None
|
904 |
+
|
905 |
+
for idx, decoder_layer in enumerate(self.layers):
|
906 |
+
if output_hidden_states:
|
907 |
+
all_hidden_states += (hidden_states,)
|
908 |
+
|
909 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
910 |
+
|
911 |
+
if self.gradient_checkpointing and self.training:
|
912 |
+
layer_outputs = self._gradient_checkpointing_func(
|
913 |
+
decoder_layer.__call__,
|
914 |
+
hidden_states,
|
915 |
+
attention_mask,
|
916 |
+
position_ids,
|
917 |
+
past_key_value,
|
918 |
+
output_attentions,
|
919 |
+
use_cache,
|
920 |
+
)
|
921 |
+
else:
|
922 |
+
layer_outputs = decoder_layer(
|
923 |
+
hidden_states,
|
924 |
+
attention_mask=attention_mask,
|
925 |
+
position_ids=position_ids,
|
926 |
+
past_key_value=past_key_value,
|
927 |
+
output_attentions=output_attentions,
|
928 |
+
use_cache=use_cache,
|
929 |
+
)
|
930 |
+
|
931 |
+
hidden_states = layer_outputs[0]
|
932 |
+
|
933 |
+
if use_cache:
|
934 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
935 |
+
|
936 |
+
if output_attentions:
|
937 |
+
all_self_attns += (layer_outputs[1],)
|
938 |
+
|
939 |
+
hidden_states = self.norm(hidden_states)
|
940 |
+
|
941 |
+
# add hidden states from the last decoder layer
|
942 |
+
if output_hidden_states:
|
943 |
+
all_hidden_states += (hidden_states,)
|
944 |
+
|
945 |
+
next_cache = next_decoder_cache if use_cache else None
|
946 |
+
if not return_dict:
|
947 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
948 |
+
return BaseModelOutputWithPast(
|
949 |
+
last_hidden_state=hidden_states,
|
950 |
+
past_key_values=next_cache,
|
951 |
+
hidden_states=all_hidden_states,
|
952 |
+
attentions=all_self_attns,
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
957 |
+
_tied_weights_keys = ["lm_head.weight"]
|
958 |
+
|
959 |
+
def __init__(self, config):
|
960 |
+
super().__init__(config)
|
961 |
+
self.model = LlamaModel(config)
|
962 |
+
self.vocab_size = config.vocab_size
|
963 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
964 |
+
|
965 |
+
# Initialize weights and apply final processing
|
966 |
+
self.post_init()
|
967 |
+
|
968 |
+
def get_input_embeddings(self):
|
969 |
+
return self.model.embed_tokens
|
970 |
+
|
971 |
+
def set_input_embeddings(self, value):
|
972 |
+
self.model.embed_tokens = value
|
973 |
+
|
974 |
+
def get_output_embeddings(self):
|
975 |
+
return self.lm_head
|
976 |
+
|
977 |
+
def set_output_embeddings(self, new_embeddings):
|
978 |
+
self.lm_head = new_embeddings
|
979 |
+
|
980 |
+
def set_decoder(self, decoder):
|
981 |
+
self.model = decoder
|
982 |
+
|
983 |
+
def get_decoder(self):
|
984 |
+
return self.model
|
985 |
+
|
986 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
987 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
988 |
+
def forward(
|
989 |
+
self,
|
990 |
+
input_ids: torch.LongTensor = None,
|
991 |
+
attention_mask: Optional[torch.Tensor] = None,
|
992 |
+
position_ids: Optional[torch.LongTensor] = None,
|
993 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
994 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
995 |
+
labels: Optional[torch.LongTensor] = None,
|
996 |
+
use_cache: Optional[bool] = None,
|
997 |
+
output_attentions: Optional[bool] = None,
|
998 |
+
output_hidden_states: Optional[bool] = None,
|
999 |
+
return_dict: Optional[bool] = None,
|
1000 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1001 |
+
r"""
|
1002 |
+
Args:
|
1003 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1004 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1005 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1006 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1007 |
+
|
1008 |
+
Returns:
|
1009 |
+
|
1010 |
+
Example:
|
1011 |
+
|
1012 |
+
```python
|
1013 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1014 |
+
|
1015 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1016 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1017 |
+
|
1018 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1019 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1020 |
+
|
1021 |
+
>>> # Generate
|
1022 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1023 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1024 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1025 |
+
```"""
|
1026 |
+
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1034 |
+
outputs = self.model(
|
1035 |
+
input_ids=input_ids,
|
1036 |
+
attention_mask=attention_mask,
|
1037 |
+
position_ids=position_ids,
|
1038 |
+
past_key_values=past_key_values,
|
1039 |
+
inputs_embeds=inputs_embeds,
|
1040 |
+
use_cache=use_cache,
|
1041 |
+
output_attentions=output_attentions,
|
1042 |
+
output_hidden_states=output_hidden_states,
|
1043 |
+
return_dict=return_dict,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
hidden_states = outputs[0]
|
1047 |
+
if self.config.pretraining_tp > 1:
|
1048 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1049 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1050 |
+
logits = torch.cat(logits, dim=-1)
|
1051 |
+
else:
|
1052 |
+
logits = self.lm_head(hidden_states)
|
1053 |
+
logits = logits.float()
|
1054 |
+
|
1055 |
+
loss = None
|
1056 |
+
if labels is not None:
|
1057 |
+
# Shift so that tokens < n predict n
|
1058 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1059 |
+
shift_labels = labels[..., 1:].contiguous()
|
1060 |
+
# Flatten the tokens
|
1061 |
+
loss_fct = CrossEntropyLoss()
|
1062 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1063 |
+
shift_labels = shift_labels.view(-1)
|
1064 |
+
# Enable model parallelism
|
1065 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1066 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1067 |
+
|
1068 |
+
if not return_dict:
|
1069 |
+
output = (logits,) + outputs[1:]
|
1070 |
+
return (loss,) + output if loss is not None else output
|
1071 |
+
|
1072 |
+
return CausalLMOutputWithPast(
|
1073 |
+
loss=loss,
|
1074 |
+
logits=logits,
|
1075 |
+
past_key_values=outputs.past_key_values,
|
1076 |
+
hidden_states=outputs.hidden_states,
|
1077 |
+
attentions=outputs.attentions,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
def prepare_inputs_for_generation(
|
1081 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1082 |
+
):
|
1083 |
+
if past_key_values is not None:
|
1084 |
+
past_length = past_key_values[0][0].shape[2]
|
1085 |
+
|
1086 |
+
# Some generation methods already pass only the last input ID
|
1087 |
+
if input_ids.shape[1] > past_length:
|
1088 |
+
remove_prefix_length = past_length
|
1089 |
+
else:
|
1090 |
+
# Default to old behavior: keep only final ID
|
1091 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1092 |
+
|
1093 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1094 |
+
|
1095 |
+
position_ids = kwargs.get("position_ids", None)
|
1096 |
+
if attention_mask is not None and position_ids is None:
|
1097 |
+
# create position_ids on the fly for batch generation
|
1098 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1099 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1100 |
+
if past_key_values:
|
1101 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1102 |
+
|
1103 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1104 |
+
if inputs_embeds is not None and past_key_values is None:
|
1105 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1106 |
+
else:
|
1107 |
+
model_inputs = {"input_ids": input_ids}
|
1108 |
+
|
1109 |
+
model_inputs.update(
|
1110 |
+
{
|
1111 |
+
"position_ids": position_ids,
|
1112 |
+
"past_key_values": past_key_values,
|
1113 |
+
"use_cache": kwargs.get("use_cache"),
|
1114 |
+
"attention_mask": attention_mask,
|
1115 |
+
}
|
1116 |
+
)
|
1117 |
+
return model_inputs
|
1118 |
+
|
1119 |
+
@staticmethod
|
1120 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1121 |
+
reordered_past = ()
|
1122 |
+
for layer_past in past_key_values:
|
1123 |
+
reordered_past += (
|
1124 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1125 |
+
)
|
1126 |
+
return reordered_past
|
1127 |
+
|
1128 |
+
|
1129 |
+
@add_start_docstrings(
|
1130 |
+
"""
|
1131 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1132 |
+
|
1133 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1134 |
+
(e.g. GPT-2) do.
|
1135 |
+
|
1136 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1137 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1138 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1139 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1140 |
+
each row of the batch).
|
1141 |
+
""",
|
1142 |
+
LLAMA_START_DOCSTRING,
|
1143 |
+
)
|
1144 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1145 |
+
def __init__(self, config):
|
1146 |
+
super().__init__(config)
|
1147 |
+
self.num_labels = config.num_labels
|
1148 |
+
self.model = LlamaModel(config)
|
1149 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1150 |
+
|
1151 |
+
# Initialize weights and apply final processing
|
1152 |
+
self.post_init()
|
1153 |
+
|
1154 |
+
def get_input_embeddings(self):
|
1155 |
+
return self.model.embed_tokens
|
1156 |
+
|
1157 |
+
def set_input_embeddings(self, value):
|
1158 |
+
self.model.embed_tokens = value
|
1159 |
+
|
1160 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1161 |
+
def forward(
|
1162 |
+
self,
|
1163 |
+
input_ids: torch.LongTensor = None,
|
1164 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1165 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1166 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1167 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1168 |
+
labels: Optional[torch.LongTensor] = None,
|
1169 |
+
use_cache: Optional[bool] = None,
|
1170 |
+
output_attentions: Optional[bool] = None,
|
1171 |
+
output_hidden_states: Optional[bool] = None,
|
1172 |
+
return_dict: Optional[bool] = None,
|
1173 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1174 |
+
r"""
|
1175 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1176 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1177 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1178 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1179 |
+
"""
|
1180 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1181 |
+
|
1182 |
+
transformer_outputs = self.model(
|
1183 |
+
input_ids,
|
1184 |
+
attention_mask=attention_mask,
|
1185 |
+
position_ids=position_ids,
|
1186 |
+
past_key_values=past_key_values,
|
1187 |
+
inputs_embeds=inputs_embeds,
|
1188 |
+
use_cache=use_cache,
|
1189 |
+
output_attentions=output_attentions,
|
1190 |
+
output_hidden_states=output_hidden_states,
|
1191 |
+
return_dict=return_dict,
|
1192 |
+
)
|
1193 |
+
hidden_states = transformer_outputs[0]
|
1194 |
+
logits = self.score(hidden_states)
|
1195 |
+
|
1196 |
+
if input_ids is not None:
|
1197 |
+
batch_size = input_ids.shape[0]
|
1198 |
+
else:
|
1199 |
+
batch_size = inputs_embeds.shape[0]
|
1200 |
+
|
1201 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1202 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1203 |
+
if self.config.pad_token_id is None:
|
1204 |
+
sequence_lengths = -1
|
1205 |
+
else:
|
1206 |
+
if input_ids is not None:
|
1207 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
1208 |
+
logits.device
|
1209 |
+
)
|
1210 |
+
else:
|
1211 |
+
sequence_lengths = -1
|
1212 |
+
|
1213 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1214 |
+
|
1215 |
+
loss = None
|
1216 |
+
if labels is not None:
|
1217 |
+
labels = labels.to(logits.device)
|
1218 |
+
if self.config.problem_type is None:
|
1219 |
+
if self.num_labels == 1:
|
1220 |
+
self.config.problem_type = "regression"
|
1221 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1222 |
+
self.config.problem_type = "single_label_classification"
|
1223 |
+
else:
|
1224 |
+
self.config.problem_type = "multi_label_classification"
|
1225 |
+
|
1226 |
+
if self.config.problem_type == "regression":
|
1227 |
+
loss_fct = MSELoss()
|
1228 |
+
if self.num_labels == 1:
|
1229 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1230 |
+
else:
|
1231 |
+
loss = loss_fct(pooled_logits, labels)
|
1232 |
+
elif self.config.problem_type == "single_label_classification":
|
1233 |
+
loss_fct = CrossEntropyLoss()
|
1234 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1235 |
+
elif self.config.problem_type == "multi_label_classification":
|
1236 |
+
loss_fct = BCEWithLogitsLoss()
|
1237 |
+
loss = loss_fct(pooled_logits, labels)
|
1238 |
+
if not return_dict:
|
1239 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1240 |
+
return ((loss,) + output) if loss is not None else output
|
1241 |
+
|
1242 |
+
return SequenceClassifierOutputWithPast(
|
1243 |
+
loss=loss,
|
1244 |
+
logits=pooled_logits,
|
1245 |
+
past_key_values=transformer_outputs.past_key_values,
|
1246 |
+
hidden_states=transformer_outputs.hidden_states,
|
1247 |
+
attentions=transformer_outputs.attentions,
|
1248 |
+
)
|
version_check.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
from packaging import version
|
3 |
+
|
4 |
+
MIN_VERSION = "4.35.2"
|
5 |
+
|
6 |
+
|
7 |
+
def check_transformers_version():
|
8 |
+
if version.parse(transformers.__version__) < version.parse(MIN_VERSION):
|
9 |
+
raise ImportError(
|
10 |
+
f"You are using transformers=={transformers.__version__}, but transformers>={MIN_VERSION} is required to use DeciLM. Please upgrade transformers."
|
11 |
+
)
|