perlthoughts commited on
Commit
2aefc63
1 Parent(s): 503e91e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ datasets:
6
+ - Open-Orca/SlimOrca
7
+ ---
8
+ # DeciLM-7B-instruct
9
+
10
+ DeciLM-7B-instruct is a model for short-form instruction following. It is built by LoRA fine-tuning on the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca).
11
+
12
+ ### 🔥 Click [here](https://console.deci.ai/infery-llm-demo) for a live demo of DeciLM-7B + Infery!
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+
18
+ DeciLM-7B-instruct is a derivative of the recently released [DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B) language model, a pre-trained, high-efficiency generative text model with 7 billion parameters. DeciLM-7B-instruct is one the best 7B instruct models obtained using simple LoRA fine-tuning, without relying on preference optimization techniques such as RLHF and DPO.
19
+
20
+ - **Developed by:** [Deci](https://deci.ai)
21
+ - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention.
22
+ - **Language(s) (NLP):** English
23
+ - **License:** Apache 2.0
24
+
25
+ ## Model Architecture
26
+
27
+ | Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* |
28
+ |:----------|:----------|:----------|:----------|:----------|
29
+ | 7.04 billion | 32 | 32 | 8192 | Variable |
30
+
31
+ *AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each model layer.
32
+
33
+
34
+ ### Model Sources
35
+
36
+ - **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date)
37
+ - **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct)
38
+ - **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing)
39
+ - **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct)
40
+
41
+ ### Prompt Template
42
+ ```
43
+ ### System:
44
+ {system_prompt}
45
+ ### User:
46
+ {user_prompt}
47
+ ### Assistant:
48
+ ```
49
+
50
+ ## Uses
51
+
52
+ The model is intended for commercial and research use in English.
53
+
54
+ ## How to Get Started with the Model
55
+
56
+ Use the code below to get started with the model.
57
+
58
+ ```python
59
+ import torch
60
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
61
+
62
+ model_name = "Deci/DeciLM-7B-instruct"
63
+
64
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
65
+
66
+ quantize = False # Optional. Useful for GPUs with less than 24GB memory
67
+
68
+ if quantize:
69
+ dtype_kwargs = dict(quantization_config=BitsAndBytesConfig(
70
+ load_in_4bit=True,
71
+ bnb_4bit_compute_dtype=torch.bfloat16
72
+ ))
73
+ else:
74
+ dtype_kwargs = dict(torch_dtype="auto")
75
+
76
+ model = AutoModelForCausalLM.from_pretrained(
77
+ model_name,
78
+ device_map="auto",
79
+ trust_remote_code=True,
80
+ **dtype_kwargs
81
+ )
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
84
+ tokenizer.pad_token = tokenizer.eos_token
85
+
86
+ deci_generator = pipeline("text-generation",
87
+ model=model,
88
+ tokenizer=tokenizer,
89
+ temperature=0.1,
90
+ device_map="auto",
91
+ max_length=4096,
92
+ return_full_text=False)
93
+
94
+ system_prompt = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
95
+
96
+ user_prompt = "How do I make the most delicious pancakes the world has ever tasted?"
97
+
98
+ prompt = tokenizer.apply_chat_template([
99
+ {"role": "system", "content": system_prompt},
100
+ {"role": "user", "content": user_prompt},
101
+ ], tokenize=False, add_generation_prompt=True)
102
+
103
+ response = deci_generator(prompt)[0]['generated_text']
104
+ print(prompt + response)
105
+ ```
106
+
107
+ ## Evaluation
108
+
109
+ Below are DeciLM-7B and DeciLM-7B-instruct's evaluation results.
110
+
111
+ | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
112
+ |:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
113
+ | DecilLM-7B | 61.55 | 59.39 | 82.51 | 59.76 | 40.33 | 79.95 | 47.38 |
114
+ | DecilLM-7B-instruct | 63.19 | 61.01 | 82.37 | 60.24 | 49.75 | 79.72 | 46.02 |
115
+
116
+
117
+
118
+ ### Runtime Benchmarks
119
+
120
+ | Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts |
121
+ |:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|
122
+ | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** | 352 | 352 |
123
+ | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 |
124
+ | Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559** | 1024 | 4096 |
125
+ | Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 |
126
+ | Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 |
127
+ | Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 |
128
+
129
+ - In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py).
130
+ - Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To witness the full capabilities of Infery-LLM first-hand, we invite you to engage with our [interactive demo](https://console.deci.ai/infery-llm-demo).
131
+
132
+ ## Ethical Considerations and Limitations
133
+
134
+ DeciLM-7B-instruct is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment.
135
+
136
+ ## How to Cite
137
+
138
+ Please cite this model using this format.
139
+
140
+ ```bibtex
141
+ @misc{DeciFoundationModels,
142
+ title = {DeciLM-7B-instruct},
143
+ author = {DeciAI Research Team},
144
+ year = {2023}
145
+ url={https://huggingface.co/Deci/DeciLM-7B-instruct},
146
+ }
147
+ ```
benchmark_hf_model.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from argparse import ArgumentParser
3
+
4
+ import datasets
5
+ import torch
6
+ import transformers
7
+ from transformers import AutoModelForCausalLM, BatchEncoding
8
+
9
+ """
10
+ Usage examples (with the best batch sizes on A100-80GB-400W)
11
+ ============================================================
12
+ python -m benchmark_hf_model --model_name_or_path="Deci/DeciLM-7B" --batch_size=352
13
+ python -m benchmark_hf_model --model_name_or_path="mistralai/Mistral-7B-v0.1" --batch_size=192 --model_kwargs_json='{"use_flash_attention_2": true}'
14
+ python -m benchmark_hf_model --model_name_or_path="meta-llama/Llama-2-7b-hf" --batch_size=48 --model_kwargs_json='{"use_flash_attention_2": true}'
15
+ """
16
+
17
+
18
+ def parse_args():
19
+ parser = ArgumentParser()
20
+
21
+ parser.add_argument(
22
+ "--model_name_or_path",
23
+ type=str,
24
+ required=True,
25
+ )
26
+ parser.add_argument(
27
+ "--warmup_iters",
28
+ type=int,
29
+ default=10,
30
+ )
31
+ parser.add_argument(
32
+ "--iterations",
33
+ type=int,
34
+ default=5,
35
+ )
36
+ parser.add_argument(
37
+ "--batch_size",
38
+ type=int,
39
+ default=32,
40
+ )
41
+ parser.add_argument(
42
+ "--prompt_length",
43
+ type=int,
44
+ default=512,
45
+ )
46
+ parser.add_argument(
47
+ "--max_new_tokens",
48
+ type=int,
49
+ default=512,
50
+ )
51
+ parser.add_argument(
52
+ "--precision",
53
+ type=str,
54
+ default="bf16",
55
+ help="Model precision, from: fp32, fp16 or bf16",
56
+ )
57
+ parser.add_argument(
58
+ "--model_kwargs_json",
59
+ type=str,
60
+ default=None,
61
+ )
62
+ return parser.parse_args()
63
+
64
+
65
+ def main():
66
+ args = parse_args()
67
+ transformers.logging.set_verbosity_error()
68
+ datasets.logging.set_verbosity_error()
69
+
70
+ dict_precisions = {
71
+ "fp32": torch.float32,
72
+ "fp16": torch.float16,
73
+ "bf16": torch.bfloat16,
74
+ }
75
+ if args.precision not in dict_precisions:
76
+ raise ValueError(
77
+ f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
78
+ )
79
+ dtype = dict_precisions[args.precision]
80
+
81
+ model_kwargs = {}
82
+ if args.model_kwargs_json is not None:
83
+ model_kwargs = json.loads(args.model_kwargs_json)
84
+
85
+ print(f"loading model...")
86
+ model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True,
87
+ torch_dtype=dtype, **model_kwargs)
88
+ try:
89
+ print(model.model.layers[0].self_attn)
90
+ except:
91
+ print("couldn't print the model's attention module")
92
+
93
+ starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
94
+ model.cuda()
95
+ model.eval()
96
+
97
+ prompt = torch.ones(args.prompt_length, dtype=torch.long)
98
+ inputs = BatchEncoding({"input_ids": prompt.repeat(args.batch_size, 1)})
99
+ inputs = inputs.to(model.device)
100
+
101
+ # warmup
102
+ print(f"warming up for {args.warmup_iters} iterations...")
103
+ for _ in range(args.warmup_iters):
104
+ with torch.no_grad():
105
+ _ = model.generate(
106
+ **inputs,
107
+ max_new_tokens=1,
108
+ do_sample=False,
109
+ eos_token_id=-1234,
110
+ )
111
+ print('finished warmup')
112
+ torch.cuda.synchronize()
113
+
114
+ print(
115
+ f"prefill ({args.prompt_length} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}) + generation ({args.max_new_tokens} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}):")
116
+ tokens_generated = args.max_new_tokens * args.batch_size
117
+ prefill_and_generation = []
118
+ for gen_iter in range(args.iterations):
119
+ starter.record()
120
+ with torch.no_grad():
121
+ _ = model.generate(
122
+ **inputs,
123
+ max_new_tokens=args.max_new_tokens,
124
+ do_sample=False,
125
+ eos_token_id=-1234,
126
+ )
127
+ ender.record()
128
+ torch.cuda.synchronize()
129
+ t = starter.elapsed_time(ender) / 1000
130
+ prefill_and_generation.append(t)
131
+ print(f" iter {gen_iter + 1}: {t:.03f} sec total, {tokens_generated / t:.02f} generated tokens/sec")
132
+ aver = sum(prefill_and_generation) / len(prefill_and_generation)
133
+ print(f" average: {aver:.03f} sec total, {tokens_generated / aver:.02f} generated tokens/sec")
134
+ print(f"These results are obtained for model '{args.model_name_or_path}' with {args.batch_size=}.")
135
+
136
+
137
+ if __name__ == "__main__":
138
+ main()
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeciLMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_decilm.DeciLMConfig",
7
+ "AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 32768,
16
+ "model_type": "deci",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads_per_layer": [4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4],
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": {"type": "dynamic", "factor": 8.0},
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "use_bfloat16": true,
26
+ "transformers_version": "4.35.2",
27
+ "use_cache": true,
28
+ "vocab_size": 32000,
29
+ "tokenizer_class": "LlamaTokenizer"
30
+ }
configuration_decilm.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .version_check import check_transformers_version
2
+
3
+ check_transformers_version()
4
+
5
+ from .transformers_v4_35_2__configuration_llama import LlamaConfig
6
+
7
+
8
+ class DeciLMConfig(LlamaConfig):
9
+ r"""
10
+ Args:
11
+ num_key_value_heads_per_layer (`List[int]`):
12
+ The number of key-value heads per layer.
13
+ """
14
+ model_type = "deci"
15
+
16
+ def __init__(
17
+ self,
18
+ num_key_value_heads_per_layer: list = None,
19
+ **kwargs,
20
+ ):
21
+ self.num_key_value_heads_per_layer = num_key_value_heads_per_layer
22
+ super().__init__(**kwargs)
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f471920afc2e510800809fc7a6d40a29b746aa92f65d0afc8a267344beebaa8
3
+ size 4985122440
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa58e0f315b22597fd203688b1c48ae2baba1d4c84211d351b2a1853838f961
3
+ size 4922207848
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:962740f34e74539c9b19ebcc31d710bfb2ee8db8d8f1ca92bc6f9b993e241f0e
3
+ size 4179805944
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14087102464
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
modeling_decilm.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright and license in the repo.
3
+ """ PyTorch DeciLM model."""
4
+ from .version_check import check_transformers_version
5
+
6
+ check_transformers_version()
7
+
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch import nn
14
+ from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
15
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
16
+
17
+ from .configuration_decilm import DeciLMConfig
18
+ from .transformers_v4_35_2__modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
19
+ from .transformers_v4_35_2__modeling_llama import LlamaMLP, LlamaRMSNorm, LlamaAttention, apply_rotary_pos_emb, \
20
+ repeat_kv, LlamaPreTrainedModel, LLAMA_START_DOCSTRING, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, \
21
+ BaseModelOutputWithPast, LLAMA_INPUTS_DOCSTRING
22
+
23
+ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES["deci"] = "DeciLMForCausalLM"
24
+ _CONFIG_FOR_DOC = "DeciLMConfig"
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class DeciLMAttention(LlamaAttention):
29
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
30
+
31
+ def __init__(self, config: DeciLMConfig, layer_idx: int):
32
+ nn.Module.__init__(self)
33
+ self.config = config
34
+ self.hidden_size = config.hidden_size
35
+ self.num_heads = config.num_attention_heads
36
+ self.head_dim = self.hidden_size // self.num_heads
37
+ self.layer_idx = layer_idx
38
+ self.num_key_value_heads = config.num_key_value_heads_per_layer[layer_idx]
39
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
40
+ self.pretraining_tp = config.pretraining_tp
41
+ self.max_position_embeddings = config.max_position_embeddings
42
+ self.rope_theta = getattr(config, 'rope_theta', None)
43
+
44
+ if (self.head_dim * self.num_heads) != self.hidden_size:
45
+ raise ValueError(
46
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
47
+ f" and `num_heads`: {self.num_heads})."
48
+ )
49
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
50
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
51
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
52
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
53
+
54
+ self._init_rope()
55
+
56
+ def forward(
57
+ self,
58
+ hidden_states: torch.Tensor,
59
+ attention_mask: Optional[torch.Tensor] = None,
60
+ position_ids: Optional[torch.LongTensor] = None,
61
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
62
+ output_attentions: bool = False,
63
+ use_cache: bool = False,
64
+ **kwargs,
65
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
66
+ bsz, q_len, _ = hidden_states.size()
67
+ is_decode = past_key_value is not None
68
+ if self.pretraining_tp > 1:
69
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
70
+ query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
71
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
72
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
73
+
74
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
75
+ query_states = torch.cat(query_states, dim=-1)
76
+
77
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
78
+ key_states = torch.cat(key_states, dim=-1)
79
+
80
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
81
+ value_states = torch.cat(value_states, dim=-1)
82
+
83
+ else:
84
+ query_states = self.q_proj(hidden_states)
85
+ key_states = self.k_proj(hidden_states)
86
+ value_states = self.v_proj(hidden_states)
87
+
88
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
89
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
90
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
91
+
92
+ kv_seq_len = key_states.shape[-2]
93
+ if past_key_value is not None:
94
+ kv_seq_len += past_key_value[0].shape[-2]
95
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
96
+
97
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
98
+
99
+ if past_key_value is not None:
100
+ # reuse k, v, self_attention
101
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
102
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
103
+
104
+ past_key_value = (key_states, value_states) if use_cache else None
105
+
106
+ # repeat k/v heads if n_kv_heads < n_heads
107
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
108
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
109
+ if is_decode:
110
+ with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=True,
111
+ enable_mem_efficient=attention_mask is None):
112
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
113
+ is_causal=False,
114
+ attn_mask=attention_mask)
115
+ attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size)
116
+
117
+ else:
118
+ with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
119
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
120
+ is_causal=attention_mask is None,
121
+ attn_mask=attention_mask)
122
+
123
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
124
+ raise ValueError(
125
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
126
+ f" {attn_output.size()}"
127
+ )
128
+
129
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
130
+
131
+ if self.pretraining_tp > 1:
132
+ attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
133
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
134
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
135
+ else:
136
+ attn_output = self.o_proj(attn_output)
137
+
138
+ attn_weights = None
139
+
140
+ return attn_output, attn_weights, past_key_value
141
+
142
+
143
+ class DeciLMDecoderLayer(LlamaDecoderLayer):
144
+ def __init__(self, config: DeciLMConfig, layer_idx: int):
145
+ nn.Module.__init__(self)
146
+ self.hidden_size = config.hidden_size
147
+ self.layer_idx = layer_idx
148
+ self.self_attn = DeciLMAttention(config=config, layer_idx=layer_idx)
149
+ self.mlp = LlamaMLP(config)
150
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
151
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
152
+
153
+
154
+ @add_start_docstrings(
155
+ "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
156
+ LLAMA_START_DOCSTRING,
157
+ )
158
+ class DeciLMPreTrainedModel(LlamaPreTrainedModel):
159
+ config_class = DeciLMConfig
160
+ _no_split_modules = ["DeciLMDecoderLayer"]
161
+ _keys_to_ignore_on_load_missing = ["self_attn.rotary_emb.inv_freq"]
162
+
163
+
164
+ @add_start_docstrings(
165
+ "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
166
+ LLAMA_START_DOCSTRING,
167
+ )
168
+ class DeciLMModel(LlamaModel, DeciLMPreTrainedModel):
169
+ """
170
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
171
+
172
+ Args:
173
+ config: DeciLMConfig
174
+ """
175
+
176
+ def __init__(self, config: DeciLMConfig):
177
+ DeciLMPreTrainedModel.__init__(self, config)
178
+ self.padding_idx = config.pad_token_id
179
+ self.vocab_size = config.vocab_size
180
+
181
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
182
+ self.layers = nn.ModuleList([DeciLMDecoderLayer(config, layer_idx) for layer_idx
183
+ in range(config.num_hidden_layers)])
184
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
185
+
186
+ self.gradient_checkpointing = False
187
+ # Initialize weights and apply final processing
188
+ self.post_init()
189
+
190
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
191
+ def forward(
192
+ self,
193
+ input_ids: torch.LongTensor = None,
194
+ attention_mask: Optional[torch.Tensor] = None,
195
+ position_ids: Optional[torch.LongTensor] = None,
196
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
197
+ inputs_embeds: Optional[torch.FloatTensor] = None,
198
+ use_cache: Optional[bool] = None,
199
+ output_attentions: Optional[bool] = None,
200
+ output_hidden_states: Optional[bool] = None,
201
+ return_dict: Optional[bool] = None,
202
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
203
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
204
+ output_hidden_states = (
205
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
206
+ )
207
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
208
+
209
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
210
+
211
+ # retrieve input_ids and inputs_embeds
212
+ if input_ids is not None and inputs_embeds is not None:
213
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
214
+ elif input_ids is not None:
215
+ batch_size, seq_length = input_ids.shape[:2]
216
+ elif inputs_embeds is not None:
217
+ batch_size, seq_length = inputs_embeds.shape[:2]
218
+ else:
219
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
220
+
221
+ past_key_values_length = 0
222
+ if past_key_values is not None:
223
+ past_key_values_length = past_key_values[0][0].shape[2]
224
+
225
+ if position_ids is None:
226
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
227
+ position_ids = torch.arange(
228
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
229
+ )
230
+ position_ids = position_ids.unsqueeze(0)
231
+
232
+ if inputs_embeds is None:
233
+ inputs_embeds = self.embed_tokens(input_ids)
234
+
235
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
236
+ if attention_mask is not None:
237
+ # 4d mask is passed through the layers
238
+ attention_mask = _prepare_4d_causal_attention_mask(
239
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
240
+ )
241
+
242
+ # embed positions
243
+ hidden_states = inputs_embeds
244
+
245
+ if self.gradient_checkpointing and self.training:
246
+ if use_cache:
247
+ logger.warning_once(
248
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
249
+ )
250
+ use_cache = False
251
+
252
+ # decoder layers
253
+ all_hidden_states = () if output_hidden_states else None
254
+ all_self_attns = () if output_attentions else None
255
+ next_decoder_cache = () if use_cache else None
256
+
257
+ for idx, decoder_layer in enumerate(self.layers):
258
+ if output_hidden_states:
259
+ all_hidden_states += (hidden_states,)
260
+
261
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
262
+
263
+ if self.gradient_checkpointing and self.training:
264
+ layer_outputs = self._gradient_checkpointing_func(
265
+ decoder_layer.__call__,
266
+ hidden_states,
267
+ attention_mask,
268
+ position_ids,
269
+ past_key_value,
270
+ output_attentions,
271
+ use_cache,
272
+ )
273
+ else:
274
+ layer_outputs = decoder_layer(
275
+ hidden_states,
276
+ attention_mask=attention_mask,
277
+ position_ids=position_ids,
278
+ past_key_value=past_key_value,
279
+ output_attentions=output_attentions,
280
+ use_cache=use_cache,
281
+ )
282
+
283
+ hidden_states = layer_outputs[0]
284
+
285
+ if use_cache:
286
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
287
+
288
+ if output_attentions:
289
+ all_self_attns += (layer_outputs[1],)
290
+
291
+ hidden_states = self.norm(hidden_states)
292
+
293
+ # add hidden states from the last decoder layer
294
+ if output_hidden_states:
295
+ all_hidden_states += (hidden_states,)
296
+
297
+ next_cache = next_decoder_cache if use_cache else None
298
+ if not return_dict:
299
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
300
+ return BaseModelOutputWithPast(
301
+ last_hidden_state=hidden_states,
302
+ past_key_values=next_cache,
303
+ hidden_states=all_hidden_states,
304
+ attentions=all_self_attns,
305
+ )
306
+
307
+
308
+ class DeciLMForCausalLM(LlamaForCausalLM, DeciLMPreTrainedModel):
309
+ def __init__(self, config):
310
+ DeciLMPreTrainedModel.__init__(self, config)
311
+ self.model = DeciLMModel(config)
312
+ self.pretraining_tp = config.pretraining_tp
313
+ self.vocab_size = config.vocab_size
314
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
315
+
316
+ # Initialize weights and apply final processing
317
+ self.post_init()
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "additional_special_tokens": [],
29
+ "bos_token": "<s>",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "</s>",
32
+ "legacy": true,
33
+ "model_max_length": 1000000000000000019884624838656,
34
+ "pad_token": null,
35
+ "sp_model_kwargs": {},
36
+ "spaces_between_special_tokens": false,
37
+ "tokenizer_class": "LlamaTokenizer",
38
+ "unk_token": "<unk>",
39
+ "use_default_system_prompt": true,
40
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '### User:\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '### System:\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '### Assistant:\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '### Assistant:' }}\n{% endif %}\n{% endfor %}"
41
+ }
transformers_v4_35_2__configuration_llama.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class LlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
65
+ Llama 2 up to 4096, CodeLlama up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+
99
+
100
+ ```python
101
+ >>> from transformers import LlamaModel, LlamaConfig
102
+
103
+ >>> # Initializing a LLaMA llama-7b style configuration
104
+ >>> configuration = LlamaConfig()
105
+
106
+ >>> # Initializing a model from the llama-7b style configuration
107
+ >>> model = LlamaModel(configuration)
108
+
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+ model_type = "llama"
113
+ keys_to_ignore_at_inference = ["past_key_values"]
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32000,
118
+ hidden_size=4096,
119
+ intermediate_size=11008,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ hidden_act="silu",
124
+ max_position_embeddings=2048,
125
+ initializer_range=0.02,
126
+ rms_norm_eps=1e-6,
127
+ use_cache=True,
128
+ pad_token_id=None,
129
+ bos_token_id=1,
130
+ eos_token_id=2,
131
+ pretraining_tp=1,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ attention_bias=False,
136
+ **kwargs,
137
+ ):
138
+ self.vocab_size = vocab_size
139
+ self.max_position_embeddings = max_position_embeddings
140
+ self.hidden_size = hidden_size
141
+ self.intermediate_size = intermediate_size
142
+ self.num_hidden_layers = num_hidden_layers
143
+ self.num_attention_heads = num_attention_heads
144
+
145
+ # for backward compatibility
146
+ if num_key_value_heads is None:
147
+ num_key_value_heads = num_attention_heads
148
+
149
+ self.num_key_value_heads = num_key_value_heads
150
+ self.hidden_act = hidden_act
151
+ self.initializer_range = initializer_range
152
+ self.rms_norm_eps = rms_norm_eps
153
+ self.pretraining_tp = pretraining_tp
154
+ self.use_cache = use_cache
155
+ self.rope_theta = rope_theta
156
+ self.rope_scaling = rope_scaling
157
+ self._rope_scaling_validation()
158
+ self.attention_bias = attention_bias
159
+
160
+ super().__init__(
161
+ pad_token_id=pad_token_id,
162
+ bos_token_id=bos_token_id,
163
+ eos_token_id=eos_token_id,
164
+ tie_word_embeddings=tie_word_embeddings,
165
+ **kwargs,
166
+ )
167
+
168
+ def _rope_scaling_validation(self):
169
+ """
170
+ Validate the `rope_scaling` configuration.
171
+ """
172
+ if self.rope_scaling is None:
173
+ return
174
+
175
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
176
+ raise ValueError(
177
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
178
+ f"got {self.rope_scaling}"
179
+ )
180
+ rope_scaling_type = self.rope_scaling.get("type", None)
181
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
182
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
183
+ raise ValueError(
184
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
185
+ )
186
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
187
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers_v4_35_2__modeling_attn_mask_utils.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import List, Optional, Tuple, Union
15
+
16
+ import torch
17
+
18
+
19
+ class AttentionMaskConverter:
20
+ """
21
+ A utility attention mask class that allows one to:
22
+ - Create a causal 4d mask
23
+ - Create a causal 4d mask with slided window
24
+ - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
25
+ key_value_length) that can be multiplied with attention scores
26
+
27
+ Parameters:
28
+ is_causal (`bool`):
29
+ Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
30
+
31
+ sliding_window (`int`, *optional*):
32
+ Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
33
+ """
34
+
35
+ def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
36
+ self.is_causal = is_causal
37
+ self.sliding_window = sliding_window
38
+
39
+ if self.sliding_window is not None and self.sliding_window <= 0:
40
+ raise ValueError(
41
+ f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
42
+ )
43
+
44
+ def to_causal_4d(
45
+ self,
46
+ batch_size: int,
47
+ query_length: int,
48
+ key_value_length: int,
49
+ dtype: torch.dtype = torch.float32,
50
+ device: Union[torch.device, "str"] = "cpu",
51
+ ) -> torch.Tensor:
52
+ """
53
+ Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
54
+ bias to upper right hand triangular matrix (causal mask).
55
+ """
56
+ if not self.is_causal:
57
+ raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
58
+
59
+ # If shape is not cached, create a new causal mask and cache it
60
+ input_shape = (batch_size, query_length)
61
+ past_key_values_length = key_value_length - query_length
62
+
63
+ # create causal mask
64
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
65
+ causal_4d_mask = None
66
+ if input_shape[-1] > 1 or self.sliding_window is not None:
67
+ causal_4d_mask = self._make_causal_mask(
68
+ input_shape,
69
+ dtype,
70
+ device=device,
71
+ past_key_values_length=past_key_values_length,
72
+ sliding_window=self.sliding_window,
73
+ )
74
+
75
+ return causal_4d_mask
76
+
77
+ def to_4d(
78
+ self,
79
+ attention_mask_2d: torch.Tensor,
80
+ query_length: int,
81
+ key_value_length: Optional[int] = None,
82
+ dtype: torch.dtype = torch.float32,
83
+ ) -> torch.Tensor:
84
+ """
85
+ Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
86
+ key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
87
+ causal, a causal mask will be added.
88
+ """
89
+ input_shape = (attention_mask_2d.shape[0], query_length)
90
+
91
+ # create causal mask
92
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
93
+ causal_4d_mask = None
94
+ if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
95
+ if key_value_length is None:
96
+ raise ValueError(
97
+ "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
98
+ )
99
+
100
+ past_key_values_length = key_value_length - query_length
101
+ causal_4d_mask = self._make_causal_mask(
102
+ input_shape,
103
+ dtype,
104
+ device=attention_mask_2d.device,
105
+ past_key_values_length=past_key_values_length,
106
+ sliding_window=self.sliding_window,
107
+ )
108
+ elif self.sliding_window is not None:
109
+ raise NotImplementedError("Sliding window is currently only implemented for causal masking")
110
+
111
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
112
+ expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
113
+ attention_mask_2d.device
114
+ )
115
+ expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
116
+
117
+ return expanded_4d_mask
118
+
119
+ @staticmethod
120
+ def _make_causal_mask(
121
+ input_ids_shape: torch.Size,
122
+ dtype: torch.dtype,
123
+ device: torch.device,
124
+ past_key_values_length: int = 0,
125
+ sliding_window: Optional[int] = None,
126
+ ):
127
+ """
128
+ Make causal mask used for bi-directional self-attention.
129
+ """
130
+ bsz, tgt_len = input_ids_shape
131
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
132
+ mask_cond = torch.arange(mask.size(-1), device=device)
133
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
134
+
135
+ mask = mask.to(dtype)
136
+
137
+ if past_key_values_length > 0:
138
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
139
+
140
+ # add lower triangular sliding window mask if necessary
141
+ if sliding_window is not None:
142
+ diagonal = past_key_values_length - sliding_window + 1
143
+
144
+ context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
145
+ mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
146
+
147
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
148
+
149
+ @staticmethod
150
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
151
+ """
152
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
153
+ """
154
+ bsz, src_len = mask.size()
155
+ tgt_len = tgt_len if tgt_len is not None else src_len
156
+
157
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
158
+
159
+ inverted_mask = 1.0 - expanded_mask
160
+
161
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
162
+
163
+
164
+ def _prepare_4d_causal_attention_mask(
165
+ attention_mask: Optional[torch.Tensor],
166
+ input_shape: Union[torch.Size, Tuple, List],
167
+ inputs_embeds: torch.Tensor,
168
+ past_key_values_length: int,
169
+ sliding_window: Optional[int] = None,
170
+ ):
171
+ """
172
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
173
+ `(batch_size, key_value_length)`
174
+
175
+ Args:
176
+ attention_mask (`torch.Tensor` or `None`):
177
+ A 2D attention mask of shape `(batch_size, key_value_length)`
178
+ input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
179
+ The input shape should be a tuple that defines `(batch_size, query_length)`.
180
+ inputs_embeds (`torch.Tensor`):
181
+ The embedded inputs as a torch Tensor.
182
+ past_key_values_length (`int`):
183
+ The length of the key value cache.
184
+ sliding_window (`int`, *optional*):
185
+ If the model uses windowed attention, a sliding window should be passed.
186
+ """
187
+ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
188
+
189
+ key_value_length = input_shape[-1] + past_key_values_length
190
+
191
+ # 4d mask is passed through the layers
192
+ if attention_mask is not None:
193
+ attention_mask = attn_mask_converter.to_4d(
194
+ attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
195
+ )
196
+ else:
197
+ attention_mask = attn_mask_converter.to_causal_4d(
198
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
199
+ )
200
+
201
+ return attention_mask
202
+
203
+
204
+ def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
205
+ """
206
+ Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
207
+ `(batch_size, key_value_length)`
208
+
209
+ Args:
210
+ mask (`torch.Tensor` or `None`):
211
+ A 2D attention mask of shape `(batch_size, key_value_length)`
212
+ dtype (`torch.dtype`):
213
+ The torch dtype the created mask shall have.
214
+ tgt_len (`int`):
215
+ The target length or query length the created mask shall have.
216
+ """
217
+ return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
218
+
219
+
220
+ def _create_4d_causal_attention_mask(
221
+ input_shape: Union[torch.Size, Tuple, List],
222
+ dtype: torch.dtype,
223
+ device: torch.device,
224
+ past_key_values_length: int = 0,
225
+ sliding_window: Optional[int] = None,
226
+ ):
227
+ """
228
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
229
+
230
+ Args:
231
+ input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
232
+ The input shape should be a tuple that defines `(batch_size, query_length)`.
233
+ dtype (`torch.dtype`):
234
+ The torch dtype the created mask shall have.
235
+ device (`int`):
236
+ The torch device the created mask shall have.
237
+ sliding_window (`int`, *optional*):
238
+ If the model uses windowed attention, a sliding window should be passed.
239
+ """
240
+ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
241
+
242
+ key_value_length = past_key_values_length + input_shape[-1]
243
+ attention_mask = attn_mask_converter.to_causal_4d(
244
+ input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
245
+ )
246
+
247
+ return attention_mask
transformers_v4_35_2__modeling_llama.py ADDED
@@ -0,0 +1,1248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from .transformers_v4_35_2__modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask
33
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
36
+ from transformers.utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from transformers.utils.import_utils import is_torch_fx_available
44
+ from .transformers_v4_35_2__configuration_llama import LlamaConfig
45
+
46
+ # Deci: commented out to prevent unnecessary dependency
47
+ # if is_flash_attn_2_available():
48
+ # from flash_attn import flash_attn_func, flash_attn_varlen_func
49
+ # from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
50
+
51
+
52
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
53
+ # It means that the function will not be traced through and simply appear as a node in the graph.
54
+ if is_torch_fx_available():
55
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = "LlamaConfig"
61
+
62
+
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
76
+ warnings.warn(
77
+ "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils.AttentionMaskConverter._prepare_4d_attention_mask"
78
+ )
79
+ return AttentionMaskConverter._prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
80
+
81
+
82
+ def _make_causal_mask(
83
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
84
+ ):
85
+ warnings.warn(
86
+ "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
87
+ )
88
+ return AttentionMaskConverter._make_causal_mask(
89
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
90
+ )
91
+
92
+
93
+ class LlamaRMSNorm(nn.Module):
94
+ def __init__(self, hidden_size, eps=1e-6):
95
+ """
96
+ LlamaRMSNorm is equivalent to T5LayerNorm
97
+ """
98
+ super().__init__()
99
+ self.weight = nn.Parameter(torch.ones(hidden_size))
100
+ self.variance_epsilon = eps
101
+
102
+ def forward(self, hidden_states):
103
+ input_dtype = hidden_states.dtype
104
+ hidden_states = hidden_states.to(torch.float32)
105
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
106
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
107
+ return self.weight * hidden_states.to(input_dtype)
108
+
109
+
110
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
111
+
112
+
113
+ class LlamaRotaryEmbedding(nn.Module):
114
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
115
+ super().__init__()
116
+
117
+ self.dim = dim
118
+ self.max_position_embeddings = max_position_embeddings
119
+ self.base = base
120
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
121
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
122
+
123
+ # Build here to make `torch.jit.trace` work.
124
+ self._set_cos_sin_cache(
125
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
126
+ )
127
+
128
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
129
+ self.max_seq_len_cached = seq_len
130
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
131
+
132
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
133
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
134
+ emb = torch.cat((freqs, freqs), dim=-1)
135
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
136
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
137
+
138
+ def forward(self, x, seq_len=None):
139
+ # x: [bs, num_attention_heads, seq_len, head_size]
140
+ if seq_len > self.max_seq_len_cached:
141
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
142
+
143
+ return (
144
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
145
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
146
+ )
147
+
148
+
149
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
150
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
151
+
152
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
153
+ self.scaling_factor = scaling_factor
154
+ super().__init__(dim, max_position_embeddings, base, device)
155
+
156
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
157
+ self.max_seq_len_cached = seq_len
158
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
159
+ t = t / self.scaling_factor
160
+
161
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
162
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
165
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
166
+
167
+
168
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
169
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
170
+
171
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
172
+ self.scaling_factor = scaling_factor
173
+ super().__init__(dim, max_position_embeddings, base, device)
174
+
175
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
176
+ self.max_seq_len_cached = seq_len
177
+
178
+ if seq_len > self.max_position_embeddings:
179
+ base = self.base * (
180
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
181
+ ) ** (self.dim / (self.dim - 2))
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
183
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
184
+
185
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
186
+
187
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
188
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
189
+ emb = torch.cat((freqs, freqs), dim=-1)
190
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
191
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
192
+
193
+
194
+ def rotate_half(x):
195
+ """Rotates half the hidden dims of the input."""
196
+ x1 = x[..., : x.shape[-1] // 2]
197
+ x2 = x[..., x.shape[-1] // 2 :]
198
+ return torch.cat((-x2, x1), dim=-1)
199
+
200
+
201
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
202
+ """Applies Rotary Position Embedding to the query and key tensors.
203
+
204
+ Args:
205
+ q (`torch.Tensor`): The query tensor.
206
+ k (`torch.Tensor`): The key tensor.
207
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
208
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
209
+ position_ids (`torch.Tensor`):
210
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
211
+ used to pass offsetted position ids when working with a KV-cache.
212
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
213
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
214
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
215
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
216
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
217
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
218
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
219
+ Returns:
220
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
221
+ """
222
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
223
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
224
+ q_embed = (q * cos) + (rotate_half(q) * sin)
225
+ k_embed = (k * cos) + (rotate_half(k) * sin)
226
+ return q_embed, k_embed
227
+
228
+
229
+ class LlamaMLP(nn.Module):
230
+ def __init__(self, config):
231
+ super().__init__()
232
+ self.config = config
233
+ self.hidden_size = config.hidden_size
234
+ self.intermediate_size = config.intermediate_size
235
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
236
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
237
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
238
+ self.act_fn = ACT2FN[config.hidden_act]
239
+
240
+ def forward(self, x):
241
+ if self.config.pretraining_tp > 1:
242
+ slice = self.intermediate_size // self.config.pretraining_tp
243
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
244
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
245
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
246
+
247
+ gate_proj = torch.cat(
248
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
249
+ )
250
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
251
+
252
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
253
+ down_proj = [
254
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
255
+ ]
256
+ down_proj = sum(down_proj)
257
+ else:
258
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
259
+
260
+ return down_proj
261
+
262
+
263
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
264
+ """
265
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
266
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
267
+ """
268
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
269
+ if n_rep == 1:
270
+ return hidden_states
271
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
272
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
273
+
274
+
275
+ class LlamaAttention(nn.Module):
276
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
277
+
278
+ def __init__(self, config: LlamaConfig):
279
+ super().__init__()
280
+ self.config = config
281
+ self.hidden_size = config.hidden_size
282
+ self.num_heads = config.num_attention_heads
283
+ self.head_dim = self.hidden_size // self.num_heads
284
+ self.num_key_value_heads = config.num_key_value_heads
285
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
286
+ self.max_position_embeddings = config.max_position_embeddings
287
+ self.rope_theta = config.rope_theta
288
+ self.is_causal = True
289
+
290
+ if (self.head_dim * self.num_heads) != self.hidden_size:
291
+ raise ValueError(
292
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
293
+ f" and `num_heads`: {self.num_heads})."
294
+ )
295
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
296
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
297
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
298
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
299
+ self._init_rope()
300
+
301
+ def _init_rope(self):
302
+ if self.config.rope_scaling is None:
303
+ self.rotary_emb = LlamaRotaryEmbedding(
304
+ self.head_dim,
305
+ max_position_embeddings=self.max_position_embeddings,
306
+ base=self.rope_theta,
307
+ )
308
+ else:
309
+ scaling_type = self.config.rope_scaling["type"]
310
+ scaling_factor = self.config.rope_scaling["factor"]
311
+ if scaling_type == "linear":
312
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ scaling_factor=scaling_factor,
316
+ base=self.rope_theta,
317
+ )
318
+ elif scaling_type == "dynamic":
319
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
320
+ self.head_dim,
321
+ max_position_embeddings=self.max_position_embeddings,
322
+ scaling_factor=scaling_factor,
323
+ base=self.rope_theta,
324
+ )
325
+ else:
326
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
327
+
328
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
329
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
330
+
331
+ def forward(
332
+ self,
333
+ hidden_states: torch.Tensor,
334
+ attention_mask: Optional[torch.Tensor] = None,
335
+ position_ids: Optional[torch.LongTensor] = None,
336
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
337
+ output_attentions: bool = False,
338
+ use_cache: bool = False,
339
+ **kwargs,
340
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
341
+ if "padding_mask" in kwargs:
342
+ warnings.warn(
343
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
344
+ )
345
+
346
+ bsz, q_len, _ = hidden_states.size()
347
+
348
+ if self.config.pretraining_tp > 1:
349
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
350
+ query_slices = self.q_proj.weight.split(
351
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
352
+ )
353
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
354
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
355
+
356
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
357
+ query_states = torch.cat(query_states, dim=-1)
358
+
359
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
360
+ key_states = torch.cat(key_states, dim=-1)
361
+
362
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
363
+ value_states = torch.cat(value_states, dim=-1)
364
+
365
+ else:
366
+ query_states = self.q_proj(hidden_states)
367
+ key_states = self.k_proj(hidden_states)
368
+ value_states = self.v_proj(hidden_states)
369
+
370
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
371
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
372
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
373
+
374
+ kv_seq_len = key_states.shape[-2]
375
+ if past_key_value is not None:
376
+ kv_seq_len += past_key_value[0].shape[-2]
377
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
378
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
379
+
380
+ if past_key_value is not None:
381
+ # reuse k, v, self_attention
382
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
383
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
384
+
385
+ past_key_value = (key_states, value_states) if use_cache else None
386
+
387
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
388
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
389
+
390
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
391
+
392
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
393
+ raise ValueError(
394
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
395
+ f" {attn_weights.size()}"
396
+ )
397
+
398
+ if attention_mask is not None:
399
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
400
+ raise ValueError(
401
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
402
+ )
403
+ attn_weights = attn_weights + attention_mask
404
+
405
+ # upcast attention to fp32
406
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
407
+ attn_output = torch.matmul(attn_weights, value_states)
408
+
409
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
410
+ raise ValueError(
411
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
412
+ f" {attn_output.size()}"
413
+ )
414
+
415
+ attn_output = attn_output.transpose(1, 2).contiguous()
416
+
417
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
418
+
419
+ if self.config.pretraining_tp > 1:
420
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
421
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
422
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
423
+ else:
424
+ attn_output = self.o_proj(attn_output)
425
+
426
+ if not output_attentions:
427
+ attn_weights = None
428
+
429
+ return attn_output, attn_weights, past_key_value
430
+
431
+
432
+ class LlamaFlashAttention2(LlamaAttention):
433
+ """
434
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
435
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
436
+ flash attention and deal with padding tokens in case the input contains any of them.
437
+ """
438
+
439
+ def forward(
440
+ self,
441
+ hidden_states: torch.Tensor,
442
+ attention_mask: Optional[torch.LongTensor] = None,
443
+ position_ids: Optional[torch.LongTensor] = None,
444
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
445
+ output_attentions: bool = False,
446
+ use_cache: bool = False,
447
+ **kwargs,
448
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
449
+ # LlamaFlashAttention2 attention does not support output_attentions
450
+ if "padding_mask" in kwargs:
451
+ warnings.warn(
452
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
453
+ )
454
+
455
+ # overwrite attention_mask with padding_mask
456
+ attention_mask = kwargs.pop("padding_mask")
457
+
458
+ output_attentions = False
459
+
460
+ bsz, q_len, _ = hidden_states.size()
461
+
462
+ query_states = self.q_proj(hidden_states)
463
+ key_states = self.k_proj(hidden_states)
464
+ value_states = self.v_proj(hidden_states)
465
+
466
+ # Flash attention requires the input to have the shape
467
+ # batch_size x seq_length x head_dim x hidden_dim
468
+ # therefore we just need to keep the original shape
469
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
470
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
471
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
472
+
473
+ kv_seq_len = key_states.shape[-2]
474
+ if past_key_value is not None:
475
+ kv_seq_len += past_key_value[0].shape[-2]
476
+
477
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
478
+
479
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
480
+
481
+ if past_key_value is not None:
482
+ # reuse k, v, self_attention
483
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
484
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
485
+
486
+ past_key_value = (key_states, value_states) if use_cache else None
487
+
488
+ query_states = query_states.transpose(1, 2)
489
+ key_states = key_states.transpose(1, 2)
490
+ value_states = value_states.transpose(1, 2)
491
+
492
+ # TODO: llama does not have dropout in the config??
493
+ # It is recommended to use dropout with FA according to the docs
494
+ # when training.
495
+ dropout_rate = 0.0 # if not self.training else self.attn_dropout
496
+
497
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
498
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
499
+ # cast them back in the correct dtype just to be sure everything works as expected.
500
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
501
+ # in fp32. (LlamaRMSNorm handles it correctly)
502
+
503
+ input_dtype = query_states.dtype
504
+ if input_dtype == torch.float32:
505
+ # Handle the case where the model is quantized
506
+ if hasattr(self.config, "_pre_quantization_dtype"):
507
+ target_dtype = self.config._pre_quantization_dtype
508
+ else:
509
+ target_dtype = self.q_proj.weight.dtype
510
+
511
+ logger.warning_once(
512
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
513
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
514
+ f" {target_dtype}."
515
+ )
516
+
517
+ query_states = query_states.to(target_dtype)
518
+ key_states = key_states.to(target_dtype)
519
+ value_states = value_states.to(target_dtype)
520
+
521
+ attn_output = self._flash_attention_forward(
522
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
523
+ )
524
+
525
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
526
+ attn_output = self.o_proj(attn_output)
527
+
528
+ if not output_attentions:
529
+ attn_weights = None
530
+
531
+ return attn_output, attn_weights, past_key_value
532
+
533
+ def _flash_attention_forward(
534
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
535
+ ):
536
+ """
537
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
538
+ first unpad the input, then computes the attention scores and pad the final attention scores.
539
+
540
+ Args:
541
+ query_states (`torch.Tensor`):
542
+ Input query states to be passed to Flash Attention API
543
+ key_states (`torch.Tensor`):
544
+ Input key states to be passed to Flash Attention API
545
+ value_states (`torch.Tensor`):
546
+ Input value states to be passed to Flash Attention API
547
+ attention_mask (`torch.Tensor`):
548
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
549
+ position of padding tokens and 1 for the position of non-padding tokens.
550
+ dropout (`int`, *optional*):
551
+ Attention dropout
552
+ softmax_scale (`float`, *optional*):
553
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
554
+ """
555
+ # Contains at least one padding token in the sequence
556
+ if attention_mask is not None:
557
+ batch_size = query_states.shape[0]
558
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
559
+ query_states, key_states, value_states, attention_mask, query_length
560
+ )
561
+
562
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
563
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
564
+
565
+ attn_output_unpad = flash_attn_varlen_func(
566
+ query_states,
567
+ key_states,
568
+ value_states,
569
+ cu_seqlens_q=cu_seqlens_q,
570
+ cu_seqlens_k=cu_seqlens_k,
571
+ max_seqlen_q=max_seqlen_in_batch_q,
572
+ max_seqlen_k=max_seqlen_in_batch_k,
573
+ dropout_p=dropout,
574
+ softmax_scale=softmax_scale,
575
+ causal=self.is_causal,
576
+ )
577
+
578
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
579
+ else:
580
+ attn_output = flash_attn_func(
581
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=self.is_causal
582
+ )
583
+
584
+ return attn_output
585
+
586
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
587
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
588
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
589
+
590
+ key_layer = index_first_axis(
591
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
592
+ )
593
+ value_layer = index_first_axis(
594
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
595
+ )
596
+ if query_length == kv_seq_len:
597
+ query_layer = index_first_axis(
598
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
599
+ )
600
+ cu_seqlens_q = cu_seqlens_k
601
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
602
+ indices_q = indices_k
603
+ elif query_length == 1:
604
+ max_seqlen_in_batch_q = 1
605
+ cu_seqlens_q = torch.arange(
606
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
607
+ ) # There is a memcpy here, that is very bad.
608
+ indices_q = cu_seqlens_q[:-1]
609
+ query_layer = query_layer.squeeze(1)
610
+ else:
611
+ # The -q_len: slice assumes left padding.
612
+ attention_mask = attention_mask[:, -query_length:]
613
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
614
+
615
+ return (
616
+ query_layer,
617
+ key_layer,
618
+ value_layer,
619
+ indices_q,
620
+ (cu_seqlens_q, cu_seqlens_k),
621
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
622
+ )
623
+
624
+
625
+ class LlamaDecoderLayer(nn.Module):
626
+ def __init__(self, config: LlamaConfig):
627
+ super().__init__()
628
+ self.hidden_size = config.hidden_size
629
+ self.self_attn = (
630
+ LlamaAttention(config=config)
631
+ if not getattr(config, "_flash_attn_2_enabled", False)
632
+ else LlamaFlashAttention2(config=config)
633
+ )
634
+ self.mlp = LlamaMLP(config)
635
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
636
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
637
+
638
+ def forward(
639
+ self,
640
+ hidden_states: torch.Tensor,
641
+ attention_mask: Optional[torch.Tensor] = None,
642
+ position_ids: Optional[torch.LongTensor] = None,
643
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
644
+ output_attentions: Optional[bool] = False,
645
+ use_cache: Optional[bool] = False,
646
+ **kwargs,
647
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
648
+ """
649
+ Args:
650
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
651
+ attention_mask (`torch.FloatTensor`, *optional*):
652
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
653
+ query_sequence_length, key_sequence_length)` if default attention is used.
654
+ output_attentions (`bool`, *optional*):
655
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
656
+ returned tensors for more detail.
657
+ use_cache (`bool`, *optional*):
658
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
659
+ (see `past_key_values`).
660
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
661
+ """
662
+ if "padding_mask" in kwargs:
663
+ warnings.warn(
664
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
665
+ )
666
+
667
+ residual = hidden_states
668
+
669
+ hidden_states = self.input_layernorm(hidden_states)
670
+
671
+ # Self Attention
672
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
673
+ hidden_states=hidden_states,
674
+ attention_mask=attention_mask,
675
+ position_ids=position_ids,
676
+ past_key_value=past_key_value,
677
+ output_attentions=output_attentions,
678
+ use_cache=use_cache,
679
+ **kwargs,
680
+ )
681
+ hidden_states = residual + hidden_states
682
+
683
+ # Fully Connected
684
+ residual = hidden_states
685
+ hidden_states = self.post_attention_layernorm(hidden_states)
686
+ hidden_states = self.mlp(hidden_states)
687
+ hidden_states = residual + hidden_states
688
+
689
+ outputs = (hidden_states,)
690
+
691
+ if output_attentions:
692
+ outputs += (self_attn_weights,)
693
+
694
+ if use_cache:
695
+ outputs += (present_key_value,)
696
+
697
+ return outputs
698
+
699
+
700
+ LLAMA_START_DOCSTRING = r"""
701
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
702
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
703
+ etc.)
704
+
705
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
706
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
707
+ and behavior.
708
+
709
+ Parameters:
710
+ config ([`LlamaConfig`]):
711
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
712
+ load the weights associated with the model, only the configuration. Check out the
713
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
714
+ """
715
+
716
+
717
+ @add_start_docstrings(
718
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
719
+ LLAMA_START_DOCSTRING,
720
+ )
721
+ class LlamaPreTrainedModel(PreTrainedModel):
722
+ config_class = LlamaConfig
723
+ base_model_prefix = "model"
724
+ supports_gradient_checkpointing = True
725
+ _no_split_modules = ["LlamaDecoderLayer"]
726
+ _skip_keys_device_placement = "past_key_values"
727
+ _supports_flash_attn_2 = True
728
+
729
+ def _init_weights(self, module):
730
+ std = self.config.initializer_range
731
+ if isinstance(module, nn.Linear):
732
+ module.weight.data.normal_(mean=0.0, std=std)
733
+ if module.bias is not None:
734
+ module.bias.data.zero_()
735
+ elif isinstance(module, nn.Embedding):
736
+ module.weight.data.normal_(mean=0.0, std=std)
737
+ if module.padding_idx is not None:
738
+ module.weight.data[module.padding_idx].zero_()
739
+
740
+
741
+ LLAMA_INPUTS_DOCSTRING = r"""
742
+ Args:
743
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
744
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
745
+ it.
746
+
747
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
748
+ [`PreTrainedTokenizer.__call__`] for details.
749
+
750
+ [What are input IDs?](../glossary#input-ids)
751
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
752
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
753
+
754
+ - 1 for tokens that are **not masked**,
755
+ - 0 for tokens that are **masked**.
756
+
757
+ [What are attention masks?](../glossary#attention-mask)
758
+
759
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
760
+ [`PreTrainedTokenizer.__call__`] for details.
761
+
762
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
763
+ `past_key_values`).
764
+
765
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
766
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
767
+ information on the default strategy.
768
+
769
+ - 1 indicates the head is **not masked**,
770
+ - 0 indicates the head is **masked**.
771
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
772
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
773
+ config.n_positions - 1]`.
774
+
775
+ [What are position IDs?](../glossary#position-ids)
776
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
777
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
778
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
779
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
780
+
781
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
782
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
783
+
784
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
785
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
786
+ of shape `(batch_size, sequence_length)`.
787
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
788
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
789
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
790
+ model's internal embedding lookup matrix.
791
+ use_cache (`bool`, *optional*):
792
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
793
+ `past_key_values`).
794
+ output_attentions (`bool`, *optional*):
795
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
796
+ tensors for more detail.
797
+ output_hidden_states (`bool`, *optional*):
798
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
799
+ more detail.
800
+ return_dict (`bool`, *optional*):
801
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
802
+ """
803
+
804
+
805
+ @add_start_docstrings(
806
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
807
+ LLAMA_START_DOCSTRING,
808
+ )
809
+ class LlamaModel(LlamaPreTrainedModel):
810
+ """
811
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
812
+
813
+ Args:
814
+ config: LlamaConfig
815
+ """
816
+
817
+ def __init__(self, config: LlamaConfig):
818
+ super().__init__(config)
819
+ self.padding_idx = config.pad_token_id
820
+ self.vocab_size = config.vocab_size
821
+
822
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
823
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
824
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
825
+
826
+ self.gradient_checkpointing = False
827
+ # Initialize weights and apply final processing
828
+ self.post_init()
829
+
830
+ def get_input_embeddings(self):
831
+ return self.embed_tokens
832
+
833
+ def set_input_embeddings(self, value):
834
+ self.embed_tokens = value
835
+
836
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
837
+ def forward(
838
+ self,
839
+ input_ids: torch.LongTensor = None,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ position_ids: Optional[torch.LongTensor] = None,
842
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
843
+ inputs_embeds: Optional[torch.FloatTensor] = None,
844
+ use_cache: Optional[bool] = None,
845
+ output_attentions: Optional[bool] = None,
846
+ output_hidden_states: Optional[bool] = None,
847
+ return_dict: Optional[bool] = None,
848
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
849
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
850
+ output_hidden_states = (
851
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
852
+ )
853
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
854
+
855
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
856
+
857
+ # retrieve input_ids and inputs_embeds
858
+ if input_ids is not None and inputs_embeds is not None:
859
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
860
+ elif input_ids is not None:
861
+ batch_size, seq_length = input_ids.shape[:2]
862
+ elif inputs_embeds is not None:
863
+ batch_size, seq_length = inputs_embeds.shape[:2]
864
+ else:
865
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
866
+
867
+ past_key_values_length = 0
868
+ if past_key_values is not None:
869
+ past_key_values_length = past_key_values[0][0].shape[2]
870
+
871
+ if position_ids is None:
872
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
873
+ position_ids = torch.arange(
874
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
875
+ )
876
+ position_ids = position_ids.unsqueeze(0)
877
+
878
+ if inputs_embeds is None:
879
+ inputs_embeds = self.embed_tokens(input_ids)
880
+
881
+ if getattr(self.config, "_flash_attn_2_enabled", False):
882
+ # 2d mask is passed through the layers
883
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
884
+ else:
885
+ # 4d mask is passed through the layers
886
+ attention_mask = _prepare_4d_causal_attention_mask(
887
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
888
+ )
889
+
890
+ # embed positions
891
+ hidden_states = inputs_embeds
892
+
893
+ if self.gradient_checkpointing and self.training:
894
+ if use_cache:
895
+ logger.warning_once(
896
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
897
+ )
898
+ use_cache = False
899
+
900
+ # decoder layers
901
+ all_hidden_states = () if output_hidden_states else None
902
+ all_self_attns = () if output_attentions else None
903
+ next_decoder_cache = () if use_cache else None
904
+
905
+ for idx, decoder_layer in enumerate(self.layers):
906
+ if output_hidden_states:
907
+ all_hidden_states += (hidden_states,)
908
+
909
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
910
+
911
+ if self.gradient_checkpointing and self.training:
912
+ layer_outputs = self._gradient_checkpointing_func(
913
+ decoder_layer.__call__,
914
+ hidden_states,
915
+ attention_mask,
916
+ position_ids,
917
+ past_key_value,
918
+ output_attentions,
919
+ use_cache,
920
+ )
921
+ else:
922
+ layer_outputs = decoder_layer(
923
+ hidden_states,
924
+ attention_mask=attention_mask,
925
+ position_ids=position_ids,
926
+ past_key_value=past_key_value,
927
+ output_attentions=output_attentions,
928
+ use_cache=use_cache,
929
+ )
930
+
931
+ hidden_states = layer_outputs[0]
932
+
933
+ if use_cache:
934
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
935
+
936
+ if output_attentions:
937
+ all_self_attns += (layer_outputs[1],)
938
+
939
+ hidden_states = self.norm(hidden_states)
940
+
941
+ # add hidden states from the last decoder layer
942
+ if output_hidden_states:
943
+ all_hidden_states += (hidden_states,)
944
+
945
+ next_cache = next_decoder_cache if use_cache else None
946
+ if not return_dict:
947
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
948
+ return BaseModelOutputWithPast(
949
+ last_hidden_state=hidden_states,
950
+ past_key_values=next_cache,
951
+ hidden_states=all_hidden_states,
952
+ attentions=all_self_attns,
953
+ )
954
+
955
+
956
+ class LlamaForCausalLM(LlamaPreTrainedModel):
957
+ _tied_weights_keys = ["lm_head.weight"]
958
+
959
+ def __init__(self, config):
960
+ super().__init__(config)
961
+ self.model = LlamaModel(config)
962
+ self.vocab_size = config.vocab_size
963
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
964
+
965
+ # Initialize weights and apply final processing
966
+ self.post_init()
967
+
968
+ def get_input_embeddings(self):
969
+ return self.model.embed_tokens
970
+
971
+ def set_input_embeddings(self, value):
972
+ self.model.embed_tokens = value
973
+
974
+ def get_output_embeddings(self):
975
+ return self.lm_head
976
+
977
+ def set_output_embeddings(self, new_embeddings):
978
+ self.lm_head = new_embeddings
979
+
980
+ def set_decoder(self, decoder):
981
+ self.model = decoder
982
+
983
+ def get_decoder(self):
984
+ return self.model
985
+
986
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
987
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
988
+ def forward(
989
+ self,
990
+ input_ids: torch.LongTensor = None,
991
+ attention_mask: Optional[torch.Tensor] = None,
992
+ position_ids: Optional[torch.LongTensor] = None,
993
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
994
+ inputs_embeds: Optional[torch.FloatTensor] = None,
995
+ labels: Optional[torch.LongTensor] = None,
996
+ use_cache: Optional[bool] = None,
997
+ output_attentions: Optional[bool] = None,
998
+ output_hidden_states: Optional[bool] = None,
999
+ return_dict: Optional[bool] = None,
1000
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1001
+ r"""
1002
+ Args:
1003
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1004
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1005
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1006
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1007
+
1008
+ Returns:
1009
+
1010
+ Example:
1011
+
1012
+ ```python
1013
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1014
+
1015
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1016
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1017
+
1018
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1019
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1020
+
1021
+ >>> # Generate
1022
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1023
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1024
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1025
+ ```"""
1026
+
1027
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1028
+ output_hidden_states = (
1029
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1030
+ )
1031
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1032
+
1033
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1034
+ outputs = self.model(
1035
+ input_ids=input_ids,
1036
+ attention_mask=attention_mask,
1037
+ position_ids=position_ids,
1038
+ past_key_values=past_key_values,
1039
+ inputs_embeds=inputs_embeds,
1040
+ use_cache=use_cache,
1041
+ output_attentions=output_attentions,
1042
+ output_hidden_states=output_hidden_states,
1043
+ return_dict=return_dict,
1044
+ )
1045
+
1046
+ hidden_states = outputs[0]
1047
+ if self.config.pretraining_tp > 1:
1048
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1049
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1050
+ logits = torch.cat(logits, dim=-1)
1051
+ else:
1052
+ logits = self.lm_head(hidden_states)
1053
+ logits = logits.float()
1054
+
1055
+ loss = None
1056
+ if labels is not None:
1057
+ # Shift so that tokens < n predict n
1058
+ shift_logits = logits[..., :-1, :].contiguous()
1059
+ shift_labels = labels[..., 1:].contiguous()
1060
+ # Flatten the tokens
1061
+ loss_fct = CrossEntropyLoss()
1062
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1063
+ shift_labels = shift_labels.view(-1)
1064
+ # Enable model parallelism
1065
+ shift_labels = shift_labels.to(shift_logits.device)
1066
+ loss = loss_fct(shift_logits, shift_labels)
1067
+
1068
+ if not return_dict:
1069
+ output = (logits,) + outputs[1:]
1070
+ return (loss,) + output if loss is not None else output
1071
+
1072
+ return CausalLMOutputWithPast(
1073
+ loss=loss,
1074
+ logits=logits,
1075
+ past_key_values=outputs.past_key_values,
1076
+ hidden_states=outputs.hidden_states,
1077
+ attentions=outputs.attentions,
1078
+ )
1079
+
1080
+ def prepare_inputs_for_generation(
1081
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1082
+ ):
1083
+ if past_key_values is not None:
1084
+ past_length = past_key_values[0][0].shape[2]
1085
+
1086
+ # Some generation methods already pass only the last input ID
1087
+ if input_ids.shape[1] > past_length:
1088
+ remove_prefix_length = past_length
1089
+ else:
1090
+ # Default to old behavior: keep only final ID
1091
+ remove_prefix_length = input_ids.shape[1] - 1
1092
+
1093
+ input_ids = input_ids[:, remove_prefix_length:]
1094
+
1095
+ position_ids = kwargs.get("position_ids", None)
1096
+ if attention_mask is not None and position_ids is None:
1097
+ # create position_ids on the fly for batch generation
1098
+ position_ids = attention_mask.long().cumsum(-1) - 1
1099
+ position_ids.masked_fill_(attention_mask == 0, 1)
1100
+ if past_key_values:
1101
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1102
+
1103
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1104
+ if inputs_embeds is not None and past_key_values is None:
1105
+ model_inputs = {"inputs_embeds": inputs_embeds}
1106
+ else:
1107
+ model_inputs = {"input_ids": input_ids}
1108
+
1109
+ model_inputs.update(
1110
+ {
1111
+ "position_ids": position_ids,
1112
+ "past_key_values": past_key_values,
1113
+ "use_cache": kwargs.get("use_cache"),
1114
+ "attention_mask": attention_mask,
1115
+ }
1116
+ )
1117
+ return model_inputs
1118
+
1119
+ @staticmethod
1120
+ def _reorder_cache(past_key_values, beam_idx):
1121
+ reordered_past = ()
1122
+ for layer_past in past_key_values:
1123
+ reordered_past += (
1124
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1125
+ )
1126
+ return reordered_past
1127
+
1128
+
1129
+ @add_start_docstrings(
1130
+ """
1131
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1132
+
1133
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1134
+ (e.g. GPT-2) do.
1135
+
1136
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1137
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1138
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1139
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1140
+ each row of the batch).
1141
+ """,
1142
+ LLAMA_START_DOCSTRING,
1143
+ )
1144
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1145
+ def __init__(self, config):
1146
+ super().__init__(config)
1147
+ self.num_labels = config.num_labels
1148
+ self.model = LlamaModel(config)
1149
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1150
+
1151
+ # Initialize weights and apply final processing
1152
+ self.post_init()
1153
+
1154
+ def get_input_embeddings(self):
1155
+ return self.model.embed_tokens
1156
+
1157
+ def set_input_embeddings(self, value):
1158
+ self.model.embed_tokens = value
1159
+
1160
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1161
+ def forward(
1162
+ self,
1163
+ input_ids: torch.LongTensor = None,
1164
+ attention_mask: Optional[torch.Tensor] = None,
1165
+ position_ids: Optional[torch.LongTensor] = None,
1166
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1167
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1168
+ labels: Optional[torch.LongTensor] = None,
1169
+ use_cache: Optional[bool] = None,
1170
+ output_attentions: Optional[bool] = None,
1171
+ output_hidden_states: Optional[bool] = None,
1172
+ return_dict: Optional[bool] = None,
1173
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1174
+ r"""
1175
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1176
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1177
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1178
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1179
+ """
1180
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1181
+
1182
+ transformer_outputs = self.model(
1183
+ input_ids,
1184
+ attention_mask=attention_mask,
1185
+ position_ids=position_ids,
1186
+ past_key_values=past_key_values,
1187
+ inputs_embeds=inputs_embeds,
1188
+ use_cache=use_cache,
1189
+ output_attentions=output_attentions,
1190
+ output_hidden_states=output_hidden_states,
1191
+ return_dict=return_dict,
1192
+ )
1193
+ hidden_states = transformer_outputs[0]
1194
+ logits = self.score(hidden_states)
1195
+
1196
+ if input_ids is not None:
1197
+ batch_size = input_ids.shape[0]
1198
+ else:
1199
+ batch_size = inputs_embeds.shape[0]
1200
+
1201
+ if self.config.pad_token_id is None and batch_size != 1:
1202
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1203
+ if self.config.pad_token_id is None:
1204
+ sequence_lengths = -1
1205
+ else:
1206
+ if input_ids is not None:
1207
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1208
+ logits.device
1209
+ )
1210
+ else:
1211
+ sequence_lengths = -1
1212
+
1213
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1214
+
1215
+ loss = None
1216
+ if labels is not None:
1217
+ labels = labels.to(logits.device)
1218
+ if self.config.problem_type is None:
1219
+ if self.num_labels == 1:
1220
+ self.config.problem_type = "regression"
1221
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1222
+ self.config.problem_type = "single_label_classification"
1223
+ else:
1224
+ self.config.problem_type = "multi_label_classification"
1225
+
1226
+ if self.config.problem_type == "regression":
1227
+ loss_fct = MSELoss()
1228
+ if self.num_labels == 1:
1229
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1230
+ else:
1231
+ loss = loss_fct(pooled_logits, labels)
1232
+ elif self.config.problem_type == "single_label_classification":
1233
+ loss_fct = CrossEntropyLoss()
1234
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1235
+ elif self.config.problem_type == "multi_label_classification":
1236
+ loss_fct = BCEWithLogitsLoss()
1237
+ loss = loss_fct(pooled_logits, labels)
1238
+ if not return_dict:
1239
+ output = (pooled_logits,) + transformer_outputs[1:]
1240
+ return ((loss,) + output) if loss is not None else output
1241
+
1242
+ return SequenceClassifierOutputWithPast(
1243
+ loss=loss,
1244
+ logits=pooled_logits,
1245
+ past_key_values=transformer_outputs.past_key_values,
1246
+ hidden_states=transformer_outputs.hidden_states,
1247
+ attentions=transformer_outputs.attentions,
1248
+ )
version_check.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+ from packaging import version
3
+
4
+ MIN_VERSION = "4.35.2"
5
+
6
+
7
+ def check_transformers_version():
8
+ if version.parse(transformers.__version__) < version.parse(MIN_VERSION):
9
+ raise ImportError(
10
+ f"You are using transformers=={transformers.__version__}, but transformers>={MIN_VERSION} is required to use DeciLM. Please upgrade transformers."
11
+ )