CVR123's picture
Tamil_BERT_for_TamilQC
cf0a1ff verified
metadata
license: cc-by-4.0
base_model: l3cube-pune/tamil-bert
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: Tamil-BERT-finetune-Tamil-questions
    results: []

Tamil-BERT-finetune-Tamil-questions

This model is a fine-tuned version of l3cube-pune/tamil-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3564
  • Precision: 0.9226
  • Recall: 0.9218
  • Accuracy: 0.9218
  • F1-score: 0.9220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1-score
1.534 1.0 305 1.2125 0.8686 0.8778 0.8778 0.8701
0.937 2.0 610 0.7374 0.8869 0.8958 0.8958 0.8899
0.5335 3.0 915 0.4742 0.8959 0.9078 0.9078 0.9007
0.3097 4.0 1220 0.3972 0.9004 0.9138 0.9138 0.9064
0.2083 5.0 1525 0.3869 0.9103 0.9058 0.9058 0.9018
0.1535 6.0 1830 0.4181 0.9115 0.9078 0.9078 0.9087
0.1222 7.0 2135 0.3576 0.9243 0.9238 0.9238 0.9240
0.1002 8.0 2440 0.3564 0.9226 0.9218 0.9218 0.9220

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2