drone_small_en / README.md
CSY1109's picture
End of training
c9a5660 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_19_0
metrics:
  - wer
model-index:
  - name: Drone Small En - Siang Yi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 19.0
          type: mozilla-foundation/common_voice_19_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 29.365079365079367

Drone Small En - Siang Yi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5365
  • Wer: 29.3651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 500.0 500 1.3457 26.9841
0.0 1000.0 1000 1.3710 26.9841
0.0 1500.0 1500 1.3774 26.9841
0.0 2000.0 2000 1.3967 28.5714
0.0 2500.0 2500 1.4267 28.5714
0.0 3000.0 3000 1.4544 28.5714
0.0 3500.0 3500 1.4849 29.3651
0.0 4000.0 4000 1.5152 29.3651
0.0 4500.0 4500 1.5297 29.3651
0.0 5000.0 5000 1.5365 29.3651

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0