indo-pure / README.md
losca's picture
Update README.md
800f655
|
raw
history blame
1.52 kB
metadata
language:
  - en
  - id
tags:
  - translation
license: apache-2.0
datasets:
  - ALT
metrics:
  - sacrebleu

Pure fine-tuning version of MarianMT en-zh on Indonesian Language

Example

%%capture
!pip install transformers transformers[sentencepiece]

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Download the pretrained model for English-Vietnamese available on the hub
model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-pure")

tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-pure")
# Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
# We used the one coming from the initial model
# This tokenizer is used to tokenize the input sentence
tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh')
# These special tokens are needed to reproduce the original tokenizer
tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True)

sentence = "The cat is on the table"
# This token is needed to identify the target language
input_sentence = "<2indo> " + sentence 
translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

Training results

Epoch Bleu
1.0 15.9336
2.0 28.0175
3.0 31.6603
4.0 33.9151
5.0 35.0472
6.0 35.8469
7.0 36.1180
8.0 36.6018
9.0 37.1973
10.0 37.2738