marimari-r2r-mlsum / README.md
joheras's picture
update model card README.md
0ccc2a0
|
raw
history blame
4.19 kB
metadata
tags:
  - simplification
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: marimari-r2r-mlsum-clara-med
    results: []

marimari-r2r-mlsum-clara-med

This model is a fine-tuned version of IIC/marimari-r2r-mlsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0687
  • Rouge1: 41.588
  • Rouge2: 23.5096
  • Rougel: 35.9281
  • Rougelsum: 36.128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 190 2.3804 41.7652 24.3329 36.7515 36.8694
No log 2.0 380 2.3417 41.586 23.679 35.8653 36.065
1.9588 3.0 570 2.4777 40.954 23.0312 35.4667 35.7321
1.9588 4.0 760 2.8230 41.387 23.4641 35.9558 36.1302
0.6288 5.0 950 3.0836 40.7233 22.4476 34.852 35.1656
0.6288 6.0 1140 3.2078 40.8334 22.4327 35.0436 35.2623
0.6288 7.0 1330 3.3649 40.6737 22.4294 34.5433 34.9343
0.1473 8.0 1520 3.4503 40.8818 22.6808 34.6777 34.9179
0.1473 9.0 1710 3.5140 40.4208 22.2582 34.5103 34.8161
0.0706 10.0 1900 3.5805 40.6348 22.4714 34.6782 34.9531
0.0706 11.0 2090 3.6325 40.932 22.4958 34.7695 35.0314
0.0706 12.0 2280 3.6405 40.619 22.406 34.9997 35.3007
0.0401 13.0 2470 3.7279 40.7365 22.2549 34.6789 34.9794
0.0401 14.0 2660 3.7440 41.1684 23.1526 35.4117 35.7039
0.0277 15.0 2850 3.8185 41.3103 23.52 35.5945 35.9176
0.0277 16.0 3040 3.8215 40.5096 22.3435 34.7064 35.0037
0.0277 17.0 3230 3.8925 41.3644 23.2827 35.3861 35.6649
0.0172 18.0 3420 3.8594 41.6572 23.574 35.5946 35.8383
0.0172 19.0 3610 3.9191 41.4862 23.2408 35.5638 35.7895
0.0087 20.0 3800 3.8776 41.8812 23.6052 35.9983 36.2555
0.0087 21.0 3990 3.9526 42.0435 23.6758 36.0881 36.3736
0.0087 22.0 4180 3.9847 41.7187 23.5729 36.0514 36.3019
0.0036 23.0 4370 3.9939 41.6098 23.3451 35.779 35.9889
0.0036 24.0 4560 4.0194 41.1443 23.1271 35.6529 35.808
0.002 25.0 4750 4.0231 41.5422 23.5603 35.8412 36.0677
0.002 26.0 4940 4.0439 41.5561 23.5496 35.8154 36.0846
0.002 27.0 5130 4.0554 41.6566 23.4052 35.8392 36.0672
0.0014 28.0 5320 4.0610 41.6654 23.5138 35.9715 36.1973
0.0014 29.0 5510 4.0658 41.5467 23.464 35.7852 36.0226
0.0011 30.0 5700 4.0687 41.588 23.5096 35.9281 36.128

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0
  • Datasets 2.8.0
  • Tokenizers 0.12.1