metadata
library_name: transformers
license: mit
base_model: almanach/camembertv2-base
tags:
- generated_from_trainer
datasets:
- french_qa
model-index:
- name: camembertv2-base-QA
results: []
{'exact': 76.47427854454203,
'f1': 88.24867416649663,
'total': 6376,
'HasAns_exact': 55.112923462986195,
'HasAns_f1': 78.66171470689538,
'HasAns_total': 3188,
'NoAns_exact': 97.83563362609787,
'NoAns_f1': 97.83563362609787,
'NoAns_total': 3188,
'best_exact': 76.47427854454203,
'best_exact_thresh': 0.0,
'best_f1': 88.24867416649728,
'best_f1_thresh': 0.0}
camembertv2-base-QA
This model is a fine-tuned version of almanach/camembertv2-base on the french_qa dataset. It achieves the following results on the evaluation set:
- Loss: 1.5647
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4453 | 1.0 | 27790 | 1.4057 |
1.3028 | 2.0 | 55580 | 1.5300 |
1.1695 | 3.0 | 83370 | 1.5647 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1