Question Answering
Transformers
Safetensors
French
roberta
Inference Endpoints
QAmembert2 / README.md
bourdoiscatie's picture
Update README.md
6d90471 verified
|
raw
history blame
1.73 kB
metadata
library_name: transformers
license: mit
base_model: almanach/camembertv2-base
tags:
  - generated_from_trainer
datasets:
  - french_qa
model-index:
  - name: camembertv2-base-QA
    results: []
{'exact': 76.47427854454203,
 'f1': 88.24867416649663,
 'total': 6376,
 'HasAns_exact': 55.112923462986195,
 'HasAns_f1': 78.66171470689538,
 'HasAns_total': 3188,
 'NoAns_exact': 97.83563362609787,
 'NoAns_f1': 97.83563362609787,
 'NoAns_total': 3188,
 'best_exact': 76.47427854454203,
 'best_exact_thresh': 0.0,
 'best_f1': 88.24867416649728,
 'best_f1_thresh': 0.0}

camembertv2-base-QA

This model is a fine-tuned version of almanach/camembertv2-base on the french_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.4453 1.0 27790 1.4057
1.3028 2.0 55580 1.5300
1.1695 3.0 83370 1.5647

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1