FAT5-base-flan-en / cross_entropy_loss.py
bourdoiscatie's picture
Upload 10 files
a0e4338 verified
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
# Copyright 2024 CATIE. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modification to the original version from Unsloth:
# - return the z-loss
# - support for torch.compile
import triton
import triton.language as tl
import torch
MAX_FUSED_SIZE = 65536
next_power_of_2 = triton.next_power_of_2
def calculate_settings(n):
BLOCK_SIZE = next_power_of_2(n)
if BLOCK_SIZE > MAX_FUSED_SIZE:
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
num_warps = 4
if BLOCK_SIZE >= 32768: num_warps = 32
elif BLOCK_SIZE >= 8192: num_warps = 16
elif BLOCK_SIZE >= 2048: num_warps = 8
return BLOCK_SIZE, num_warps
@triton.jit
def _cross_entropy_forward(logits_ptr, logits_row_stride,
loss_ptr,
lse_ptr,
labels_ptr,
n_cols,
BLOCK_SIZE: tl.constexpr,
IS_EVEN: tl.constexpr):
"""
Cross Entropy Loss = 1/n sum [ -yi log(Pi) ]
Pi = exp(xi) / sum(exp(xi))
CE_i = -y log(p) = -y log[ exp(x) / sum(exp(x)) ]
= -y [ x - log[sum(exp(x))] ]
= y * (log[sum(exp(x))] - x)
If y == 0: CE_i = 0
If y == 1: CE_i = logsumexp - x
"""
row_idx = tl.program_id(0)
logits_ptr += row_idx * logits_row_stride
loss_ptr += row_idx
lse_ptr += row_idx
labels_ptr += row_idx
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
# TODO: Fixup int32 locations to int64
label_idx = tl.load(labels_ptr).to(tl.int32)
if IS_EVEN:
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
else:
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float("inf")).to(tl.float32)
max_logits = tl.max(logits, 0)
# Maximum stops overflow
lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
tl.store(lse_ptr, lse)
if label_idx != -100:
logits_label = tl.load(logits_ptr + label_idx).to(tl.float32)
loss = lse - logits_label
else:
loss = 0.0
tl.store(loss_ptr, loss)
@triton.jit
def _cross_entropy_backward(logits_ptr, logits_row_stride,
dinputs_ptr, dinputs_row_stride,
dloss_ptr, dloss_row_stride,
dzloss_ptr, dzloss_row_stride,
lse_ptr,
labels_ptr,
n_cols,
BLOCK_SIZE: tl.constexpr,
USE_Z_LOSS: tl.constexpr,
IS_EVEN: tl.constexpr):
"""
CE_i = -y log(P) = y * (log[sum(exp(x))] - x)
dC/dx = d/dx (y * log[sum(exp(x))] - x * y)
From https://en.wikipedia.org/wiki/LogSumExp
d/dx logsumexp = exp(x) / sum(exp(x)) = softmax(x)
dC/dx = y * exp(x) / sum(exp(x)) - d/dx (x * y)
dC/dx = y * exp[ log[exp(x) / sum(exp(x))] ] using x = exp(log(x)) trick
dC/dx = y * exp[x - logsumexp] - d/dx (x * y)
If y == 0: dC/dx = 0
If y == 1 and x == label: dC/dlabel = exp[x - logsumexp] - 1
If y == 1 and x != label: dC/dx = exp[x - logsumexp]
"""
row_idx = tl.program_id(0)
logits_ptr += row_idx * logits_row_stride
dinputs_ptr += row_idx * dinputs_row_stride
dloss_ptr += row_idx * dloss_row_stride
dzloss_ptr += row_idx * dzloss_row_stride
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
# TODO: Fixup int32 locations to int64
label_idx = tl.load(labels_ptr + row_idx).to(tl.int32)
if label_idx != -100:
dloss = tl.load(dloss_ptr)
dzloss = tl.load(dzloss_ptr)
else:
dloss = 0.0
dzloss = 0.0
if IS_EVEN:
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
else:
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
lse = tl.load(lse_ptr + row_idx)
probs = tl.exp(logits - lse)
probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
din = dloss * probs
# Z_loss
if USE_Z_LOSS:
if label_idx != -100:
dzloss = tl.load(dzloss_ptr)
else:
dzloss = 0.0
row_minus_max = logits
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
din += softmax_output * dzloss
if IS_EVEN:
tl.store(dinputs_ptr + col_offsets, din)
else:
tl.store(dinputs_ptr + col_offsets, din, mask=mask)
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::cross_entropy_triton_fwd", "(Tensor logits, Tensor labels, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::cross_entropy_triton_fwd", "default")
def cross_entropy_triton_fwd(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
_cross_entropy_forward[(n_rows,)](
logits, logits.stride(0),
losses,
logsumexp,
labels,
n_cols,
BLOCK_SIZE = BLOCK_SIZE,
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
num_warps = num_warps,
)
return losses, logsumexp
@torch.library.impl_abstract("flasht5::cross_entropy_triton_fwd", cross_entropy_triton_fwd)
def cross_entropy_triton_fwd_abstract(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
return losses, logsumexp
torch.library.define("flasht5::cross_entropy_triton_bwd", "(Tensor dlosses, Tensor dlogsumexp, Tensor logits, Tensor logsumexp, Tensor labels, float z_loss_factor, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> Tensor")
@torch.library.impl("flasht5::cross_entropy_triton_bwd", "default")
def cross_entropy_triton_bwd(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
dinputs = torch.empty_like(logits)
_cross_entropy_backward[(n_rows,)](
logits, logits.stride(0),
dinputs, dinputs.stride(0),
dlosses, dlosses.stride(0),
dlogsumexp, dlogsumexp.stride(0),
logsumexp,
labels,
n_cols,
BLOCK_SIZE = BLOCK_SIZE,
USE_Z_LOSS = (z_loss_factor != 0.0),
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
num_warps = num_warps,
)
return dinputs
@torch.library.impl_abstract("flasht5::cross_entropy_triton_bwd", cross_entropy_triton_bwd)
def cross_entropy_triton_bwd_abstract(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
return torch.empty_like(logits)
class Fast_CrossEntropyLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, logits, labels, z_loss_factor):
n_rows, n_cols = logits.shape
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
losses, logsumexp = torch.ops.flasht5.cross_entropy_triton_fwd(
logits,
labels,
n_cols,
n_rows,
BLOCK_SIZE = BLOCK_SIZE,
num_warps = num_warps
)
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.z_loss_factor = z_loss_factor
ctx.save_for_backward(logits, logsumexp, labels)
return losses, logsumexp
@staticmethod
def backward(ctx, dlosses, dlogsumexp):
logits, logsumexp, labels = ctx.saved_tensors
n_rows, n_cols = logits.shape
dinputs = torch.ops.flasht5.cross_entropy_triton_bwd(
dlosses,
dlogsumexp,
logits,
logsumexp,
labels,
ctx.z_loss_factor,
n_cols,
n_rows,
ctx.BLOCK_SIZE,
ctx.num_warps
)
return dinputs, None, None
def fast_cross_entropy_loss(logits, labels, z_loss_factor=0.0):
"""
Arguments:
logits: (batch, seq_len, vocab_size)
labels: (batch, seq_len,)
Returns:
losses: float
"""
batch, seq_len, d = logits.shape
assert(labels.shape == (batch, seq_len))
assert (d <= MAX_FUSED_SIZE)
loss, lse = Fast_CrossEntropyLoss.apply(
logits.view(batch*seq_len, d),
labels.view(-1),
z_loss_factor
)
n_items = torch.count_nonzero(labels != -100)
return loss.sum() / n_items, (z_loss_factor * torch.square(lse).sum()) / n_items