MARS5-TTS / inference.py
arnavmehta7's picture
Update inference.py
70ce783 verified
raw history blame
No virus
15.4 kB
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import logging
from typing import Optional, Dict, Type, Union, List, Tuple
from pathlib import Path
from dataclasses import dataclass
import os
import io
from mars5.model import CodecLM, ResidualTransformer
from vocos import Vocos
from encodec import EncodecModel
from mars5.diffuser import MultinomialDiffusion, DSH, perform_simple_inference
from mars5.minbpe.regex import RegexTokenizer, GPT4_SPLIT_PATTERN
from mars5.minbpe.codebook import CodebookTokenizer
from mars5.ar_generate import ar_generate
from mars5.utils import nuke_weight_norm, construct_padding_mask
from mars5.trim import trim
from huggingface_hub import ModelHubMixin, hf_hub_download
from safetensors import safe_open
import tempfile
import logging
@dataclass
class InferenceConfig():
""" The defaults configuration variables for TTS inference. """
## >>>> AR CONFIG
temperature: float = 0.7
top_k: int = 200 # 0 disables it
top_p: float = 0.2
typical_p: float = 1.0
freq_penalty: float = 3
presence_penalty: float = 0.4
rep_penalty_window: int = 80 # how far in the past to consider when penalizing repetitions. Equates to 5s
eos_penalty_decay: float = 0.5 # how much to penalize <eos>
eos_penalty_factor: float = 1 # overal penalty weighting
eos_estimated_gen_length_factor: float = 1.0 # multiple of len(text_phones) to assume an approximate output length is
## >>>> NAR CONFIG
# defaults, that can be overridden with user specified inputs
timesteps: int = 200
x_0_temp: float = 0.7
q0_override_steps: int = 20 # number of diffusion steps where NAR L0 predictions overrides AR L0 predictions.
nar_guidance_w: float = 3
max_prompt_dur: float = 12 # maximum length prompt is allowed, in seconds.
# Maximum AR codes to generate in 1 inference.
# Default of -1 leaves it same as training time max AR tokens.
# Typical values up to ~2x training time can be tolerated,
# with ~1.5x trianing time tokens having still mostly ok performance.
generate_max_len_override: int = -1
# Whether to deep clone from the reference.
# Pros: improves intelligibility and speaker cloning performance.
# Cons: requires reference transcript, and inference takes a bit longer.
deep_clone: bool = True
use_kv_cache: bool = True
trim_db: float = 27
beam_width: int = 1 # only beam width of 1 is currently supported
ref_audio_pad: float = 0
class Mars5TTS(nn.Module, ModelHubMixin):
def __init__(self, ar_ckpt, nar_ckpt, device: str = None) -> None:
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(device)
self.codec = EncodecModel.encodec_model_24khz().to(device).eval()
self.codec.set_target_bandwidth(6.0)
# save and load text tokenize
self.texttok = RegexTokenizer(GPT4_SPLIT_PATTERN)
texttok_data = io.BytesIO(ar_ckpt['vocab']['texttok.model'].encode('utf-8'))
self.texttok.load(texttok_data)
texttok_data.close()
# save and load speech tokenizer
self.speechtok = CodebookTokenizer(GPT4_SPLIT_PATTERN)
speechtok_data = io.BytesIO(ar_ckpt['vocab']['speechtok.model'].encode('utf-8'))
self.speechtok.load(speechtok_data)
speechtok_data.close()
# keep track of tokenization things.
self.n_vocab = len(self.texttok.vocab) + len(self.speechtok.vocab)
self.n_text_vocab = len(self.texttok.vocab) + 1
self.diffusion_n_classes: int = 1025 # 1 for padding idx
# load AR model
self.codeclm = CodecLM(n_vocab=self.n_vocab, dim=1536, dim_ff_scale=7/3)
self.codeclm.load_state_dict(ar_ckpt['model'])
self.codeclm = self.codeclm.to(self.device).eval()
# load NAR model
self.codecnar = ResidualTransformer(n_text_vocab=self.n_text_vocab, n_quant=self.diffusion_n_classes,
p_cond_drop=0, dropout=0)
self.codecnar.load_state_dict(nar_ckpt['model'])
self.codecnar = self.codecnar.to(self.device).eval()
self.default_T = 200
self.sr = 24000
self.latent_sr = 75
# load vocoder
self.vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(self.device).eval()
nuke_weight_norm(self.codec)
nuke_weight_norm(self.vocos)
@classmethod
def _from_pretrained(
cls: Type["Mars5TTS"],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
local_files_only: bool,
token: Optional[Union[str, bool]],
device: str = None,
**model_kwargs,
) -> "Mars5TTS":
# Download files from Hub
print(f">>>>> Downloading AR model")
ar_ckpt_path = hf_hub_download(repo_id=model_id, filename="mars5_ar.safetensors", revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token)
print(f">>>>> Downloading NAR model")
nar_ckpt_path = hf_hub_download(repo_id=model_id, filename="mars5_nar.safetensors", revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token)
ar_ckpt = {}
with safe_open(ar_ckpt_path, framework='pt', device='cpu') as f:
metadata = f.metadata()
ar_ckpt['vocab'] = {'texttok.model': metadata['texttok.model'], 'speechtok.model': metadata['speechtok.model']}
ar_ckpt['model'] = {}
for k in f.keys(): ar_ckpt['model'][k] = f.get_tensor(k)
nar_ckpt = {}
with safe_open(nar_ckpt_path, framework='pt', device='cpu') as f:
metadata = f.metadata()
nar_ckpt['vocab'] = {'texttok.model': metadata['texttok.model'], 'speechtok.model': metadata['speechtok.model']}
nar_ckpt['model'] = {}
for k in f.keys(): nar_ckpt['model'][k] = f.get_tensor(k)
# Init
return cls(ar_ckpt=ar_ckpt, nar_ckpt=nar_ckpt, device=device)
@torch.inference_mode
def vocode(self, tokens: Tensor) -> Tensor:
""" Vocodes tokens of shape (seq_len, n_q) """
tokens = tokens.T.to(self.device)
features = self.vocos.codes_to_features(tokens)
# A cool hidden feature of vocos vocoding:
# setting the bandwidth below to 1 (corresponding to 3 kbps)
# actually still works on 6kbps input tokens, but *smooths* the output
# audio a bit, which can help improve quality if its a bit noisy.
# Hence we use [1] and not [2] below.
bandwidth_id = torch.tensor([1], device=self.device) # 6 kbps
wav_diffusion = self.vocos.decode(features, bandwidth_id=bandwidth_id)
return wav_diffusion.cpu().squeeze()[None]
@torch.inference_mode
def get_speaker_embedding(self, ref_audio: Tensor) -> Tensor:
""" Given `ref_audio` (bs, T) audio tensor, compute the implicit speakre embedding of shape (bs, dim). """
if ref_audio.dim() == 1: ref_audio = ref_audio[None]
spk_reference = self.codec.encode(ref_audio[None].to(self.device))[0][0]
spk_reference = spk_reference.permute(0, 2, 1)
bs = spk_reference.shape[0]
if bs != 1:
raise AssertionError(f"Speaker embedding extraction only implemented using for bs=1 currently.")
spk_seq = self.codeclm.ref_chunked_emb(spk_reference) # (bs, sl, dim)
spk_ref_emb = self.codeclm.spk_identity_emb.weight[None].expand(bs, -1, -1) # (bs, 1, dim)
spk_seq = torch.cat([spk_ref_emb, spk_seq], dim=1) # (bs, 1+sl, dim)
# add pos encoding
spk_seq = self.codeclm.pos_embedding(spk_seq)
# codebook goes from indices 0->1023, padding is idx 1024 (the 1025th entry)
src_key_padding_mask = construct_padding_mask(spk_reference[:, :, 0], 1024)
src_key_padding_mask = torch.cat((
# append a zero here since we DO want to attend to initial position.
torch.zeros(src_key_padding_mask.shape[0], 1, dtype=bool, device=src_key_padding_mask.device),
src_key_padding_mask
),
dim=1)
# pass through transformer
res = self.codeclm.spk_encoder(spk_seq, is_causal=False, src_key_padding_mask=src_key_padding_mask)[:, :1] # select first element -> now (bs, 1, dim).
return res.squeeze(1)
@torch.inference_mode
def tts(self, text: str, ref_audio: Tensor, ref_transcript: Optional[str] = None,
cfg: Optional[InferenceConfig] = InferenceConfig()) -> Tensor:
""" Perform TTS for `text`, given a reference audio `ref_audio` (of shape [sequence_length,], sampled at 24kHz)
which has an associated `ref_transcript`. Perform inference using the inference
config given by `cfg`, which controls the temperature, top_p, etc...
Returns:
- `ar_codes`: (seq_len,) long tensor of discrete coarse code outputs from the AR model.
- `out_wav`: (T,) float output audio tensor sampled at 24kHz.
"""
if cfg.deep_clone and ref_transcript is None:
raise AssertionError(
("Inference config deep clone is set to true, but reference transcript not specified! "
"Please specify the transcript of the prompt, or set deep_clone=False in the inference `cfg` argument."
))
ref_dur = ref_audio.shape[-1]/self.sr
if ref_dur > cfg.max_prompt_dur:
logging.warning((f"Reference audio duration is {ref_dur:.2f} > max suggested ref audio. "
f"Expect quality degradations. We recommend you trim prompt to be shorter than max prompt length."))
# get text codes.
text_tokens = self.texttok.encode("<|startoftext|>"+text.strip()+"<|endoftext|>",
allowed_special='all')
text_tokens_full = self.texttok.encode("<|startoftext|>"+ ref_transcript + ' ' + str(text).strip()+"<|endoftext|>",
allowed_special='all')
if ref_audio.dim() == 1: ref_audio = ref_audio[None]
if ref_audio.shape[0] != 1: ref_audio = ref_audio.mean(dim=0, keepdim=True)
ref_audio = F.pad(ref_audio, (int(self.sr*cfg.ref_audio_pad), 0))
# get reference audio codec tokens
prompt_codec = self.codec.encode(ref_audio[None].to(self.device))[0][0] # (bs, n_q, seq_len)
n_speech_inp = 0
n_start_skip = 0
q0_str = ' '.join([str(t) for t in prompt_codec[0, 0].tolist()])
# Note, in the below, we do NOT want to encode the <eos> token as a part of it, since we will be continuing it!!!
speech_tokens = self.speechtok.encode(q0_str.strip()) # + "<|endofspeech|>", allowed_special='all')
spk_ref_codec = prompt_codec[0, :, :].T # (seq_len, n_q)
raw_prompt_acoustic_len = len(prompt_codec[0,0].squeeze())
offset_speech_codes = [p+len(self.texttok.vocab) for p in speech_tokens]
if not cfg.deep_clone:
# shallow clone, so
# 1. clip existing speech codes to be empty (n_speech_inp = 0)
offset_speech_codes = offset_speech_codes[:n_speech_inp]
else:
# Deep clone, so
# 1. set text to be text of prompt + target text
text_tokens = text_tokens_full
# 2. update n_speech_inp to be length of prompt, so we only display from ths `n_speech_inp` onwards in the final output.
n_speech_inp = len(offset_speech_codes)
prompt = torch.tensor(text_tokens + offset_speech_codes, dtype=torch.long, device=self.device)
first_codec_idx = prompt.shape[-1] - n_speech_inp + 1
# ---> perform AR code generation
logging.debug(f"Raw acoustic prompt length: {raw_prompt_acoustic_len}")
ar_codes = ar_generate(self.texttok, self.speechtok, self.codeclm,
prompt, spk_ref_codec, first_codec_idx,
max_len=cfg.generate_max_len_override if cfg.generate_max_len_override > 1 else 2000,
fp16=True if torch.cuda.is_available() else False,
temperature=cfg.temperature, topk=cfg.top_k, top_p=cfg.top_p, typical_p=cfg.typical_p,
alpha_frequency=cfg.freq_penalty, alpha_presence=cfg.presence_penalty, penalty_window=cfg.rep_penalty_window,
eos_penalty_decay=cfg.eos_penalty_decay, eos_penalty_factor=cfg.eos_penalty_factor,
beam_width=cfg.beam_width, beam_length_penalty=1,
n_phones_gen=round(cfg.eos_estimated_gen_length_factor*len(text)),
vocode=False, use_kv_cache=cfg.use_kv_cache)
# Parse AR output
output_tokens = ar_codes - len(self.texttok.vocab)
output_tokens = output_tokens.clamp(min=0).squeeze()[first_codec_idx:].cpu().tolist()
gen_codes_decoded = self.speechtok.decode_int(output_tokens)
gen_codes_decoded = torch.tensor([s for s in gen_codes_decoded if type(s) == int], dtype=torch.long, device=self.device)
c_text = torch.tensor(text_tokens, dtype=torch.long, device=self.device)[None]
c_codes = prompt_codec.permute(0, 2, 1)
c_texts_lengths = torch.tensor([len(text_tokens)], dtype=torch.long, device=self.device)
c_codes_lengths = torch.tensor([c_codes.shape[1],], dtype=torch.long, device=self.device)
_x = gen_codes_decoded[None, n_start_skip:, None].repeat(1, 1, 8) # (seq_len) -> (1, seq_len, 8)
x_padding_mask = torch.zeros((1, _x.shape[1]), dtype=torch.bool, device=_x.device)
# ---> perform DDPM NAR inference
T = self.default_T
diff = MultinomialDiffusion(self.diffusion_n_classes, timesteps=T, device=self.device)
dsh_cfg = DSH(last_greedy=True, x_0_temp=cfg.x_0_temp,
guidance_w=cfg.nar_guidance_w,
deep_clone=cfg.deep_clone, jump_len=1, jump_n_sample=1,
q0_override_steps=cfg.q0_override_steps,
enable_kevin_scaled_inference=True, # see TransFusion ASR for explanation of this
progress=False)
final_output = perform_simple_inference(self.codecnar,(
c_text, c_codes, c_texts_lengths, c_codes_lengths, _x, x_padding_mask
), diff, diff.num_timesteps, torch.float16, dsh=dsh_cfg, retain_quant0=True) # (bs, seq_len, n_quant)
skip_front = raw_prompt_acoustic_len if cfg.deep_clone else 0
final_output = final_output[0, skip_front:].to(self.device) # (seq_len, n_quant)
# vocode final output and trim silences
final_audio = self.vocode(final_output).squeeze()
final_audio, _ = trim(final_audio.cpu(), top_db=cfg.trim_db)
return gen_codes_decoded, final_audio