Isotonic's picture
Model save
daaddbc verified
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: deberta-v3-base_finetuned_bluegennx_run2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base_finetuned_bluegennx_run2
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0737
- Overall Precision: 0.7273
- Overall Recall: 0.7428
- Overall F1: 0.7350
- Overall Accuracy: 0.9752
- Aadhar F1: 0.8128
- Age F1: 0.4700
- City F1: 0.7686
- Country F1: 0.7226
- Creditcardcvv F1: 0.7531
- Creditcardnumber F1: 0.8109
- Date F1: 0.7126
- Dateofbirth F1: 0.7262
- Email F1: 0.6935
- Expiry F1: 0.6621
- Organization F1: 0.7623
- Pan F1: 0.7772
- Person F1: 0.7568
- Phonenumber F1: 0.8194
- Secondary F1: 0.6278
- State F1: 0.7735
- Time F1: 0.7856
- Url F1: 0.5824
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Aadhar F1 | Age F1 | City F1 | Country F1 | Creditcardcvv F1 | Creditcardnumber F1 | Date F1 | Dateofbirth F1 | Email F1 | Expiry F1 | Organization F1 | Pan F1 | Person F1 | Phonenumber F1 | Secondary F1 | State F1 | Time F1 | Url F1 |
|:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:---------:|:------:|:-------:|:----------:|:----------------:|:-------------------:|:-------:|:--------------:|:--------:|:---------:|:---------------:|:------:|:---------:|:--------------:|:------------:|:--------:|:-------:|:------:|
| 0.1576 | 1.0 | 3893 | 0.1289 | 0.5166 | 0.5445 | 0.5302 | 0.9559 | 0.6073 | 0.1745 | 0.5790 | 0.5463 | 0.5707 | 0.6816 | 0.4834 | 0.4489 | 0.4808 | 0.5009 | 0.6085 | 0.5667 | 0.5383 | 0.5811 | 0.4273 | 0.6592 | 0.5824 | 0.2314 |
| 0.1075 | 2.0 | 7786 | 0.1151 | 0.5991 | 0.6001 | 0.5996 | 0.9610 | 0.7012 | 0.2439 | 0.6649 | 0.5689 | 0.6735 | 0.6950 | 0.5229 | 0.6065 | 0.5176 | 0.4904 | 0.6910 | 0.7248 | 0.5493 | 0.6810 | 0.5406 | 0.6382 | 0.6816 | 0.3492 |
| 0.0804 | 3.0 | 11679 | 0.0841 | 0.6783 | 0.7045 | 0.6911 | 0.9709 | 0.7826 | 0.3554 | 0.7372 | 0.6909 | 0.7276 | 0.7621 | 0.6459 | 0.7272 | 0.6303 | 0.6235 | 0.7329 | 0.7324 | 0.6816 | 0.7855 | 0.5912 | 0.7620 | 0.7529 | 0.4652 |
| 0.0532 | 4.0 | 15572 | 0.0737 | 0.7273 | 0.7428 | 0.7350 | 0.9752 | 0.8128 | 0.4700 | 0.7686 | 0.7226 | 0.7531 | 0.8109 | 0.7126 | 0.7262 | 0.6935 | 0.6621 | 0.7623 | 0.7772 | 0.7568 | 0.8194 | 0.6278 | 0.7735 | 0.7856 | 0.5824 |
| 0.0381 | 5.0 | 19465 | 0.0753 | 0.7372 | 0.7589 | 0.7479 | 0.9768 | 0.8278 | 0.4925 | 0.7705 | 0.7185 | 0.7832 | 0.8258 | 0.7231 | 0.7605 | 0.7027 | 0.6676 | 0.7700 | 0.8011 | 0.7591 | 0.8305 | 0.6558 | 0.7828 | 0.7978 | 0.6144 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2