Buseak's picture
End of training
70f5f7f verified
|
raw
history blame
3.39 kB
metadata
license: apache-2.0
base_model: Buseak/spellcorrector_17_02_050_qwerty
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: spellcorrector_18_02_050_qwerty_v6
    results: []

spellcorrector_18_02_050_qwerty_v6

This model is a fine-tuned version of Buseak/spellcorrector_17_02_050_qwerty on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0028
  • Precision: 0.9968
  • Recall: 0.9941
  • F1: 0.9954
  • Accuracy: 0.9993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0887 1.0 967 0.0551 0.9876 0.9801 0.9838 0.9842
0.0684 2.0 1934 0.0415 0.9930 0.9844 0.9887 0.9881
0.0581 3.0 2901 0.0343 0.9924 0.9855 0.9890 0.9899
0.0487 4.0 3868 0.0280 0.9925 0.9882 0.9903 0.9917
0.0425 5.0 4835 0.0241 0.9930 0.9882 0.9906 0.9930
0.0382 6.0 5802 0.0209 0.9946 0.9882 0.9914 0.9940
0.0333 7.0 6769 0.0168 0.9951 0.9909 0.9930 0.9950
0.0294 8.0 7736 0.0148 0.9941 0.9909 0.9925 0.9957
0.0265 9.0 8703 0.0121 0.9946 0.9909 0.9927 0.9964
0.0238 10.0 9670 0.0103 0.9952 0.9919 0.9935 0.9970
0.0216 11.0 10637 0.0090 0.9978 0.9930 0.9954 0.9974
0.0193 12.0 11604 0.0076 0.9952 0.9930 0.9941 0.9979
0.0175 13.0 12571 0.0065 0.9973 0.9936 0.9954 0.9982
0.016 14.0 13538 0.0055 0.9973 0.9936 0.9954 0.9985
0.0137 15.0 14505 0.0045 0.9968 0.9936 0.9952 0.9988
0.0127 16.0 15472 0.0039 0.9973 0.9941 0.9957 0.9990
0.0118 17.0 16439 0.0034 0.9978 0.9941 0.9960 0.9991
0.0111 18.0 17406 0.0030 0.9968 0.9941 0.9954 0.9992
0.0104 19.0 18373 0.0029 0.9968 0.9941 0.9954 0.9993
0.0099 20.0 19340 0.0028 0.9968 0.9941 0.9954 0.9993

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2