simplified_phi2 / attention.py
BucketOfFish's picture
Got output to match Phi2 exactly
3649bbb
raw
history blame contribute delete
No virus
21.1 kB
from dataclasses import dataclass, field
from einops import rearrange, repeat
import math
import torch
from torch.amp.autocast_mode import autocast
import torch.nn as nn
from transformers.activations import ACT2FN
from typing import cast
# if flash_attn exists
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
print("flash_attn not found, using default implementations")
pad_input = unpad_input = FlashRotaryEmbedding = FlashCrossAttentio = FlashSelfAttention = FusedDense = None
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding (RoPE). See https://www.youtube.com/watch?v=C6rV8BsrrCc"""
def __init__(
self,
d_rotary: int,
rotary_base: float = 10000.0,
initial_cos_sin_cache_len: int = 2048,
device: torch.device | None = None,
) -> None:
super().__init__()
self.d_rotary = d_rotary
self.rotary_base = rotary_base
self.device = device
self.dtype = torch.float32
self._update_cos_sin_cache(seqlen=initial_cos_sin_cache_len)
def _update_cos_sin_cache(
self,
seqlen: int,
device: str | None = None,
dtype: torch.dtype | None = None,
) -> None:
# only call this function when seqlen is larger than _max_seqlen
self._max_seqlen = seqlen
# m * theta_i = m * base^(-2i/d) = m * (1 / base^(2i/d)), where i in [1, d/2]
m = torch.arange(
seqlen,
device=device,
dtype=torch.float32,
)
theta_i = 1.0 / (
self.rotary_base ** (
torch.arange(
start=0,
end=self.d_rotary,
step=2,
device=device,
dtype=torch.float32,
) / self.d_rotary
)
)
# torch.outer, since torch.einsum converts from fp32 to fp16 if used with torch.amp
# TODO: does this matter if I'm disabling torch.autocast?
m_theta_i = torch.outer(m, theta_i)
self._cos_cached = torch.cos(m_theta_i).to(dtype)
self._sin_cached = torch.sin(m_theta_i).to(dtype)
# TODO: scale_base caching is labelled as not yet done in Phi2
"""
if scale_base is not None:
scale = (
torch.arange(
start=0,
end=self.d_rotary,
step=2,
device=self.device,
dtype=torch.float32,
) + 0.4 * self.d_rotary
) / (1.4 * self.d_rotary)
power = (
torch.arange(seqlen, dtype=scale.dtype, device=scale.device) - seqlen // 2
) / scale_base
scale = scale.to(device=power.device) ** rearrange(power, "s -> s 1")
self._cos_cached = (torch.cos(m_theta_i) * scale).to(dtype)
self._sin_cached = (torch.sin(m_theta_i) * scale).to(dtype)
"""
def _apply_rotary_emb_qkv(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
cos: torch.FloatTensor, # dim: (_max_seqlen, d_rotary)
sin: torch.FloatTensor, # dim: (_max_seqlen, d_rotary)
) -> torch.FloatTensor:
seqlen = x.shape[1]
x_to_rotate = x[..., :self.d_rotary]
x_to_keep_unrotated = x[..., self.d_rotary:]
x1, x2 = x_to_rotate.chunk(2, dim=-1) # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_rotary/2)
broadcast_rearrange = "s d -> s 1 d" if x1.ndim == 4 else "s d -> s 1 1 d"
c, s = rearrange(cos[:seqlen], broadcast_rearrange), rearrange(sin[:seqlen], broadcast_rearrange)
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] # make sure rotary embedding is in float32
x_rotated = cast(
torch.FloatTensor,
torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1).to(x.dtype)
)
return torch.cat([x_rotated, x_to_keep_unrotated], axis=-1)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, Optional[n_qkv], n_heads, d_head)
seqlen_offset: int = 0, # each sequence is shifted by this amount - used in inference with KV cache
) -> torch.FloatTensor:
if (
not self._max_seqlen
or self._max_seqlen < x.shape[1] + seqlen_offset
or self._cos_cached.device != x.device
or self._cos_cached.dtype != x.dtype
or (self.training and self._cos_cached.is_inference())
):
self._update_cos_sin_cache(seqlen=x.shape[1] + seqlen_offset, device=x.device, dtype=x.dtype)
return self._apply_rotary_emb_qkv(
x,
cast(torch.FloatTensor, self._cos_cached[seqlen_offset:]),
cast(torch.FloatTensor, self._sin_cached[seqlen_offset:]),
)
class SelfAttention(nn.Module):
def __init__(
self,
qk_scale: float | None = None, # will use 1/sqrt(d) if set to None
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.qk_scale = qk_scale
self.dropout = nn.Dropout(attention_dropout)
# autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
@autocast("cpu", enabled=False)
@autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
causal: bool = True,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)
if key_padding_mask:
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.dropout(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v) # dim: (batch_size, seqlen, n_heads, d_head)
return cast(torch.FloatTensor, output)
class CrossAttention(nn.Module):
def __init__(
self,
qk_scale: float | None = None, # will use 1/sqrt(d) if set to None
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.qk_scale = qk_scale
self.dropout = nn.Dropout(attention_dropout)
# autocast is manually disabled to avoid `torch.einsum` using float16, which might lead to overflow
@autocast("cpu", enabled=False)
@autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor, # dim: (batch_size, seqlen_q, n_heads, d_head)
kv: torch.FloatTensor, # dim: (batch_size, seqlen_kv, 2, n_heads, d_head)
causal: bool = True,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]: # repeat kv n_heads dim to match q n_heads
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = cast(torch.FloatTensor, q.to(torch.float32))
k = k.to(torch.float32)
qk_scale = self.qk_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * qk_scale)
if key_padding_mask:
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.dropout(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v) # dim: (batch_size, seqlen_q, n_heads, d_head)
return cast(torch.FloatTensor, output)
class MLP(nn.Module):
def __init__(
self,
d_embedding: int,
act_fn: str = "gelu_new",
) -> None:
super().__init__()
n_inner = 4 * d_embedding
self.fc1 = nn.Linear(d_embedding, n_inner)
self.act = ACT2FN[act_fn]
self.fc2 = nn.Linear(n_inner, d_embedding)
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
@dataclass
class KVCache:
"""Options for model to calculate and store context during inference."""
max_seqlen: int
max_batch_size: int
seqlen_offset: int
batch_size_offset: int
kv_block_map: dict[int, torch.Tensor] = field(default_factory=dict)
lengths_per_sample: torch.Tensor | None = None
class MHA(nn.Module):
"""Multi-head attention block."""
def __init__(
self,
d_embedding: int,
n_attn_heads: int,
block_n: int,
initial_cos_sin_cache_len: int, # length of cache for rotary embedding
attn_pdrop: float,
use_flash_rotary: bool, # use flash rotary embedding if possible
use_flash_attn: bool, # use flash attention if possible
use_fused_dense: bool, # use fused dense layer if possible
checkpointing: bool, # torch.utils.checkpoint
) -> None:
super().__init__()
# rotary embedding
rotary_cls = (
FlashRotaryEmbedding
if use_flash_rotary and FlashRotaryEmbedding is not None
else RotaryEmbedding
)
self.rotary_emb = rotary_cls(
# d_rotary=math.ceil((d_embedding // n_attn_heads) / 2), # d_rotary is half of d_head
d_rotary=32, # TODO: figure out why Phi2 uses this
initial_cos_sin_cache_len=initial_cos_sin_cache_len,
)
# self attention
self_attn_cls = (
FlashSelfAttention
if use_flash_attn and FlashSelfAttention is not None
else SelfAttention
)
self.inner_self_attn = self_attn_cls(attention_dropout=attn_pdrop)
# cross attention
cross_attn_cls = (
FlashCrossAttention
if use_flash_attn and FlashCrossAttention is not None
else CrossAttention
)
self.inner_cross_attn = cross_attn_cls(attention_dropout=attn_pdrop)
# MLP
self.n_attn_heads = n_attn_heads
self.d_head = d_embedding // n_attn_heads
linear_cls = (
FusedDense
if use_fused_dense and FusedDense is not None
else nn.Linear
)
self.Wqkv = linear_cls(
d_embedding,
self.d_head * (3 * self.n_attn_heads), # calculating q, k, v for all heads in block simultaneously
)
self.fc_out = linear_cls(d_embedding, d_embedding)
# settings
self.using_flash_attn = self_attn_cls is FlashSelfAttention
self.block_n = block_n
self.checkpointing = checkpointing
def _forward_self_attn(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
key_padding_mask: torch.BoolTensor | None,
) -> torch.FloatTensor:
qkv = cast(
torch.FloatTensor,
torch.cat(
[
self.rotary_emb(qkv[:, :, :2, :, :]), # qk
qkv[:, :, 2, :, :], # v
],
dim=2,
)
)
if self.using_flash_attn and unpad_input and pad_input: # not touching flash attention code
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
cu_seqlens, max_seqlen, indices = None, None, None
# unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
if key_padding_mask:
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_self_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
)
else:
attn_output = self.inner_self_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
# repad output
if key_padding_mask:
return pad_input(attn_output, indices, batch_size, seqlen)
else:
return attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(self.inner_self_attn, qkv, key_padding_mask=key_padding_mask)
else:
return self.inner_self_attn(qkv, key_padding_mask=key_padding_mask)
def _update_kv_cache(
self,
kv: torch.FloatTensor, # dim: (batch_size, seqlen, 2, n_heads, d_head)
kv_cache: KVCache,
block_n: int,
) -> None:
if block_n not in kv_cache.kv_block_map:
kv_cache.kv_block_map[block_n] = torch.empty(
kv_cache.max_batch_size,
kv_cache.max_seqlen,
2,
kv.shape[-2], # n_heads
kv.shape[-1], # d_head
dtype=kv.dtype,
device=kv.device,
)
batch_start = kv_cache.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = kv_cache.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
# TODO: figure out why they're doing this
if sequence_end >= kv_cache.max_seqlen:
kv_cache.kv_block_map[block_n] = torch.concatenate(
(kv_cache.kv_block_map[block_n], kv),
dim=1,
)
kv_cache.kv_block_map[block_n][
batch_start:batch_end,
sequence_start:sequence_end,
...
] = kv
kv = kv_cache.kv_block_map[block_n][
batch_start:batch_end,
:sequence_end,
...
]
return kv
def _forward_cross_attn(
self,
qkv: torch.FloatTensor, # dim: (batch_size, seqlen, 3, n_heads, d_head)
kv_cache: KVCache,
key_padding_mask: torch.BoolTensor | None,
) -> torch.FloatTensor:
qk = qkv[:, :, :2, :, :]
qk = self.rotary_emb(
qk,
seqlen_offset = 0 if kv_cache is None else kv_cache.seqlen_offset,
)
v = cast(torch.FloatTensor, qkv[:, :, 2, :, :])
q = qk[:, :, 0, :, :]
kv = torch.cat(
[
qk[:, :, 1, :, :].unsqueeze(2),
v.unsqueeze(2),
],
dim=2,
)
kv = self._update_kv_cache(kv, kv_cache, self.block_n)
causal = (kv_cache.seqlen_offset == 0)
if self.using_flash_attn and unpad_input and pad_input: # not touching flash attention code
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, indices_q = (
None,
None,
None,
None,
None,
)
# unpad input and retrieve `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
if key_padding_mask:
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
if seqlen_q == 1:
key_padding_mask = cast(torch.BoolTensor, torch.ones(batch_size, 1, device=q.device))
elif seqlen_q != seqlen_k:
key_padding_mask = cast(torch.BoolTensor, key_padding_mask[:, -seqlen_q:])
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
else:
attn_output = self.inner_cross_attn(
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
if key_padding_mask:
return pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
else:
return attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
else:
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seqlen, d_embedding)
kv_cache: KVCache | None = None,
key_padding_mask: torch.LongTensor | torch.BoolTensor | None = None,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
if key_padding_mask is not None:
key_padding_mask = cast(torch.BoolTensor, key_padding_mask.bool()) # make sure it's bool and not int
qkv = self.Wqkv(x) # dim: (batch_size, seqlen, 3*n_heads*d_head)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.d_head) # dim: (batch_size, seqlen, 3, n_heads, d_head)
if kv_cache is None:
attn_output = self._forward_self_attn(qkv, key_padding_mask)
else:
attn_output = self._forward_cross_attn(qkv, kv_cache, key_padding_mask)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.fc_out(output)
return output
class ParallelAttentionBlock(nn.Module):
"""Calculates attention and MLP in parallel."""
def __init__(
self,
resid_pdrop: float, # a bit of a misnomer, right?
layer_norm_epsilon: float,
d_embedding: int,
n_attn_heads: int,
block_n: int,
initial_cos_sin_cache_len: int, # length of cache for rotary embedding
attn_pdrop: float,
use_flash_rotary: bool = True, # use flash rotary embedding if possible
use_flash_attn: bool = True, # use flash attention if possible
use_fused_dense: bool = True, # use fused dense layer if possible
checkpointing: bool = False, # torch.utils.checkpoint
) -> None:
super().__init__()
self.layer_norm = nn.LayerNorm(d_embedding, eps=layer_norm_epsilon)
self.block_n = block_n
self.multi_head_attention = MHA(
d_embedding=d_embedding,
n_attn_heads=n_attn_heads,
block_n=block_n,
initial_cos_sin_cache_len=initial_cos_sin_cache_len,
attn_pdrop=attn_pdrop,
use_flash_rotary=use_flash_rotary,
use_flash_attn=use_flash_attn,
use_fused_dense=use_fused_dense,
checkpointing=checkpointing,
)
self.mlp = MLP(d_embedding)
self.dropout = nn.Dropout(resid_pdrop)
def forward(
self,
x: torch.FloatTensor, # dim: (batch_size, seq_len, d_embedding)
kv_cache: KVCache | None = None,
key_padding_mask: torch.BoolTensor | None = None,
) -> torch.FloatTensor:
residual = x
x = self.layer_norm(x) # each token (dim: d_embedding) is normalized individually
attn_outputs = self.multi_head_attention(
x,
kv_cache=kv_cache,
key_padding_mask=key_padding_mask,
)
mlp_outputs = self.mlp(x)
x = self.dropout(attn_outputs + mlp_outputs) + residual
return x