tmvar_5e-05_250 / README.md
Brizape's picture
update model card README.md
fd809fe
|
raw
history blame
2.77 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: tmvar_5e-05_250
    results: []

tmvar_5e-05_250

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0104
  • Precision: 0.8718
  • Recall: 0.9189
  • F1: 0.8947
  • Accuracy: 0.9977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2897 1.0 25 0.0896 0.0 0.0 0.0 0.9858
0.0759 2.0 50 0.0302 0.5522 0.4 0.4639 0.9898
0.0347 3.0 75 0.0175 0.6789 0.6973 0.688 0.9945
0.0174 4.0 100 0.0133 0.76 0.8216 0.7896 0.9962
0.0084 5.0 125 0.0125 0.805 0.8703 0.8364 0.9967
0.0048 6.0 150 0.0090 0.8859 0.8811 0.8835 0.9977
0.0025 7.0 175 0.0097 0.8382 0.9243 0.8792 0.9977
0.0017 8.0 200 0.0089 0.8529 0.9405 0.8946 0.9980
0.0015 9.0 225 0.0099 0.8357 0.9351 0.8827 0.9979
0.0012 10.0 250 0.0104 0.8522 0.9351 0.8918 0.9979
0.0011 11.0 275 0.0104 0.8798 0.8703 0.875 0.9972
0.0009 12.0 300 0.0098 0.8718 0.9189 0.8947 0.9977
0.0007 13.0 325 0.0100 0.8718 0.9189 0.8947 0.9977
0.0006 14.0 350 0.0104 0.8718 0.9189 0.8947 0.9977

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2