metadata
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: tmvar_0.0001_ES2
results: []
tmvar_0.0001_ES2
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0187
- Precision: 0.8449
- Recall: 0.8541
- F1: 0.8495
- Accuracy: 0.9961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2263 | 1.47 | 25 | 0.0788 | 0.0 | 0.0 | 0.0 | 0.9843 |
0.0492 | 2.94 | 50 | 0.0355 | 0.2576 | 0.3676 | 0.3029 | 0.9863 |
0.0258 | 4.41 | 75 | 0.0224 | 0.6 | 0.6811 | 0.6380 | 0.9933 |
0.013 | 5.88 | 100 | 0.0141 | 0.8267 | 0.9027 | 0.8630 | 0.9969 |
0.0031 | 7.35 | 125 | 0.0162 | 0.8218 | 0.8973 | 0.8579 | 0.9971 |
0.0028 | 8.82 | 150 | 0.0187 | 0.8449 | 0.8541 | 0.8495 | 0.9961 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2