multiCorp_5e-05_250 / README.md
Brizape's picture
update model card README.md
fed5371
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multiCorp_5e-05_250
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiCorp_5e-05_250
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0691
- Precision: 0.6768
- Recall: 0.5971
- F1: 0.6344
- Accuracy: 0.9855
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.4757 | 0.34 | 50 | 0.1963 | 0.0 | 0.0 | 0.0 | 0.9740 |
| 0.1585 | 0.68 | 100 | 0.1299 | 0.3375 | 0.1049 | 0.1600 | 0.9758 |
| 0.1224 | 1.01 | 150 | 0.1121 | 0.3719 | 0.3094 | 0.3377 | 0.9750 |
| 0.1003 | 1.35 | 200 | 0.0954 | 0.4297 | 0.3167 | 0.3647 | 0.9791 |
| 0.0903 | 1.69 | 250 | 0.0920 | 0.4213 | 0.3063 | 0.3547 | 0.9786 |
| 0.0735 | 2.03 | 300 | 0.0795 | 0.4882 | 0.4575 | 0.4724 | 0.9814 |
| 0.0636 | 2.36 | 350 | 0.0769 | 0.5188 | 0.4718 | 0.4942 | 0.9820 |
| 0.0633 | 2.7 | 400 | 0.0737 | 0.5296 | 0.4926 | 0.5104 | 0.9823 |
| 0.0598 | 3.04 | 450 | 0.0735 | 0.5844 | 0.4320 | 0.4968 | 0.9827 |
| 0.0479 | 3.38 | 500 | 0.0730 | 0.5797 | 0.5264 | 0.5518 | 0.9831 |
| 0.0492 | 3.72 | 550 | 0.0680 | 0.6086 | 0.4978 | 0.5477 | 0.9838 |
| 0.041 | 4.05 | 600 | 0.0672 | 0.6190 | 0.5667 | 0.5917 | 0.9842 |
| 0.0371 | 4.39 | 650 | 0.0672 | 0.6616 | 0.5693 | 0.6120 | 0.9851 |
| 0.0362 | 4.73 | 700 | 0.0665 | 0.6670 | 0.5711 | 0.6153 | 0.9852 |
| 0.0334 | 5.07 | 750 | 0.0700 | 0.6532 | 0.5468 | 0.5953 | 0.9848 |
| 0.0288 | 5.41 | 800 | 0.0670 | 0.6482 | 0.5628 | 0.6025 | 0.9849 |
| 0.0288 | 5.74 | 850 | 0.0698 | 0.6643 | 0.5745 | 0.6162 | 0.9851 |
| 0.0263 | 6.08 | 900 | 0.0717 | 0.6827 | 0.5845 | 0.6298 | 0.9856 |
| 0.0231 | 6.42 | 950 | 0.0712 | 0.6826 | 0.5702 | 0.6213 | 0.9852 |
| 0.0238 | 6.76 | 1000 | 0.0691 | 0.6768 | 0.5971 | 0.6344 | 0.9855 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2